Synthesis and Structural Insight into poly(dimethylsiloxane)-b-poly(2-vinylpyridine) Copolymers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis Protocols
2.3. Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Angelopoulou, P.P.; Moutsios, I.; Manesi, G.M.; Ivanov, D.A.; Sakellariou, G.; Avgeropoulos, A. Designing High χ Copolymer Materials for Nanotechnology Applications: A Systematic Bulk vs. Thin Films Approach. Prog. Polym. Sci. 2022, 135, 101625. [Google Scholar] [CrossRef]
- Lo, T.Y.; Krishnan, M.R.; Lu, K.Y.; Ho, R.M. Silicon-Containing Block Copolymers for Lithographic Applications. Prog. Polym. Sci. 2018, 77, 19–68. [Google Scholar] [CrossRef]
- Sinturel, C.; Bates, F.S.; Hillmyer, M.A. High χ-Low N Block Polymers: How Far Can We Go? ACS Macro Lett. 2015, 4, 1044–1050. [Google Scholar] [CrossRef] [PubMed]
- Cummins, C.; Pino, G.; Mantione, D.; Fleury, G. Engineering block copolymer materials for patterning ultra-low dimensions. Mol. Syst. Des. Eng. 2020, 5, 1642–1657. [Google Scholar] [CrossRef]
- Oh, J.; Suh, H.S.; Ko, Y.; Nah, Y.; Lee, J.C.; Yeom, B.; Char, K.; Ross, C.A.; Son, J.G. Universal perpendicular orientation of block copolymer microdomains using a filtered plasma. Nat. Commun. 2019, 10, 2912. [Google Scholar] [CrossRef] [PubMed]
- Cummins, C.; Ghoshal, T.; Holmes, J.D.; Morris, M.A. Strategies for Inorganic Incorporation Using Neat Block Copolymer Thin Films for Etch Mask Function and Nanotechnological Application. Adv. Mater. 2016, 28, 5586–5618. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Dong, S.; Fu, P.; Yue, Q.; Zhou, Y.; Wang, J. Synthesis of Porous Poly(Ionic Liquid)s for Chemical CO2 Fixation With Epoxides. Green Chem. 2022, 24, 3433–3460. [Google Scholar] [CrossRef]
- Koo, J.-M.; Park, C.H.; Yoo, S.; Lee, G.W.; Yang, S.Y.; Kim, J.H.; Yoo, S.I. Selective Ion Transport Through Three-Dimensionally Interconnected Nanopores of Quaternized Block Copolymer Membranes for Energy Harvesting Application. Soft Matter 2021, 17, 3700–3708. [Google Scholar] [CrossRef]
- Park, T.H.; Yu, S.; Park, J.; Park, C. Interactive structural color displays of nano-architectonic 1-dimensional block copolymer photonic crystals. Sci. Technol. Adv. Mater. 2023, 24, 2156256. [Google Scholar] [CrossRef]
- Park, T.H.; Yu, S.; Park, C. Stimuli-Adaptive and Human-Interactive Sensing Displays Enabled by Block Copolymer Structural Color. Polym. Rev. 2023, 63, 2245022. [Google Scholar] [CrossRef]
- Tang, Q.; Ren, H.; Kochivski, Z.; Cheng, L.; Zhang, K.; Yuan, J.; Zhang, W. Topological Effects on Cyclic Co-Poly(ionic liquid)s Self-Assembly. Macrom. Chem. Phys. 2022, 224, 2200134. [Google Scholar] [CrossRef]
- Bellas, V.; Iatrou, H.; Hadjichristidis, N. Controlled Anionic Polymerization of Hexamethylcyclotrisiloxane. Model Linear and Miktoarm Star Co- and Terpolymers of Dimethylsiloxane with Styrene and Isoprene. Macromolecules 2000, 33, 6993–6997. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Manesi, G.-M.; Avgeropoulos, A.; Ho, R.-M. Superlattice Structure from Self-Assembly of High-χ Block Copolymers via Chain Interdigitation. Macromolecules 2022, 55, 3449–3457. [Google Scholar] [CrossRef]
- Jeong, J.W.; Park, W.I.; Kim, M.J.; Ross, C.A.; Jung, Y.S. Highly Tunable Self-Assembled Nanostructures from a Poly(2-Vinylpyridine-b-Dimethylsiloxane) Block Copolymer. Nano Lett. 2011, 11, 4095–4101. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; Hur, Y.H.; Jeong, J.W.; Nam, T.W.; Lee, J.H.; Jeon, K.; Kim, Y.; Jung, Y.S. Block Copolymer with an Extremely High Block-to-Block Interaction for a Significant Reduction of Line-Edge Fluctuations in Self-Assembled Patterns. Chem. Mater. 2016, 28, 5680–5688. [Google Scholar] [CrossRef]
- Pitet, L.M.; Wuister, S.F.; Peeters, E.; Kramer, E.J.; Hawker, C.J.; Meijer, E.W. Well-Organized Dense Arrays of Nanodomains in Thin Films of Poly(Dimethylsiloxane)-b-Poly(Lactide) Diblock Copolymers. Macromolecules 2013, 46, 8289–8295. [Google Scholar] [CrossRef]
- Luo, Y.; Montarnal, D.; Kim, S.; Shi, W.; Barteau, K.P.; Pester, C.W.; Hustad, P.D.; Christianson, M.D.; Fredrickson, G.H.; Kramer, E.J.; et al. Poly(Dimethylsiloxane-b-Methyl Methacrylate): A Promising Candidate for Sub-10 Nm Patterning. Macromolecules 2015, 48, 3422–3430. [Google Scholar] [CrossRef]
- Azuma, K.; Sun, J.; Choo, Y.; Rokhlenko, Y.; Dwyer, J.H.; Schweitzer, B.; Hayakawa, T.; Osuji, C.O.; Gopalan, P. Self-Assembly of an Ultrahigh-χ Block Copolymer with Versatile Etch Selectivity. Macromolecules 2018, 51, 6460–6467. [Google Scholar] [CrossRef]
- Luo, Y.; Kim, B.; Montarnal, D.; Mester, Z.; Pester, C.W.; McGrath, A.J.; Hill, G.; Kramer, E.J.; Fredrickson, G.H.; Hawker, C.J. Improved Self-Assembly of Poly(Dimethylsiloxane-b-Ethylene Oxide) Using a Hydrogen-Bonding Additive. J. Polym. Sci. Part A Polym. Chem. 2016, 54, 2200–2208. [Google Scholar] [CrossRef]
- Jeon, S.; Jun, T.; Jo, S.; Ahn, H.; Lee, S.; Lee, B.; Ryu, D.Y. Frank-Kasper Phases Identified in PDMS-b-PTFEA Copolymers with High Conformational Asymmetry. Macromol. Rapid Commun. 2019, 40, 1800729. [Google Scholar] [CrossRef]
- Kennemur, J.G. Poly(Vinylpyridine) Segments in Block Copolymers: Synthesis, Self-Assembly, and Versatility. Macromolecules 2019, 52, 1354–1370. [Google Scholar] [CrossRef]
- Mavronasou, K.; Zamboulis, A.; Klonos, P.; Kyritsis, A.; Bikiaris, D.N.; Papadakis, R.; Deligkiozi, I. Poly(Vinyl Pyridine) and Its Quaternized Derivatives: Understanding Their Solvation and Solid State Properties. Polymers 2022, 14, 804. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, P.M.; Ruiz De Luzuriaga, A.; Constantinou, M.; Georgopanos, P.; Rangou, S.; Avgeropoulos, A.; Zafeiropoulos, N.E.; Grande, H.J.; Cabañero, G.; Mecerreyes, D.; et al. Influence of Anion Exchange in Self-Assembling of Polymeric Ionic Liquid Block Copolymers. Macromolecules 2011, 44, 4936–4941. [Google Scholar] [CrossRef]
- Yu, X.; Li, J.; Yan, N.; Jiang, W. Quaternization-Assisted Assembly of Polymer-Tethered Gold Nanoparticles into Superlattices with a Tunable Structure. J. Phys. Chem. C 2023, 127, 10253–10260. [Google Scholar] [CrossRef]
- Zhang, Z.; Rahman, M.M.; Abetz, C.; Bajer, B.; Wang, J.; Abetz, V. Quaternization of a Polystyrene-block-poly(4-vinylpyridine) Isoporous Membrane: An Approach to Tune the Pore Size and the Charge Density. Macromol. Rapid Commun. 2018, 40, 1800729. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-K.; Ding, S.-P.; Ye, Z.; Xia, D.-L.; Xu, J.T. Thermodynamic understanding the phase behavior of fully quaternized poly(ethylene oxide)-b-poly(4-vinylpyridine) block copolymers. Polymer 2022, 254, 125045. [Google Scholar] [CrossRef]
- Briones, O.-X.; Tapia, R.A.; Campodónico, P.R.; Urzúa, M.; Leiva, Á.; Contreras, R.; González-Navarrete, J. Synthesis and characterization of poly (ionic liquid) derivatives of N-alkyl quaternized poly(4-vinylpyridine). React. Funct. Polym. 2018, 124, 64–71. [Google Scholar] [CrossRef]
- Lin, I.-M.; Tsai, R.-S.; Chou, Y.-T.; Chiang, Y.-W. Photonic Crystal Reflectors with Ultrahigh Sensitivity and Discriminability for Detecting Extremely Low-Concentration Surfactants. ACS Appl. Mater. Interfaces 2023, 15, 45249–45259. [Google Scholar] [CrossRef]
- Babutan, I.; Todor-Boer, O.; Atanase, L.I.; Vulpoi, A.; Botiz, I. Self-Assembly of Block Copolymers in Thin Films Swollen-Rich in Solvent Vapors. Polymers 2023, 15, 1900. [Google Scholar] [CrossRef]
- Hlavatovičová, E.; Fernandez-Alvarez, R.; Byś, K.; Kereïche, S.; Mandal, T.K.; Atanase, L.I.; Štěpánek, M.; Uchman, M. Stimuli-Responsive Triblock Terpolymer Conversion into Multi-Stimuli-Responsive Micelles with Dynamic Covalent Bonds for Drug Delivery through a Quick and Controllable Post-Polymerization Reaction. Pharmaceutics 2023, 15, 288. [Google Scholar] [CrossRef]
- Teper, P.; Celny, A.; Kowalczuk, A.; Mendrek, B. Quaternized Poly(N,N′-dimethylaminoethyl methacrylate) Star Nanostructures in the Solution and on the Surface. Polymers 2023, 15, 1260. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Hogen-Esch, T.E. Synthesis and Characterization of Narrow Molecular Weight Distribution AB and ABA Poly(Vinylpyridine)-Poly(Dimethylsiloxane) Block Copolymers via Anionic Polymerization. Macromolecules 2001, 34, 2805–2811. [Google Scholar] [CrossRef]
- Fragouli, P.G.; Iatrou, H.; Hadjichristidis, N. Synthesis and Characterization of Linear Tetrablock Quarterpolymers of Styrene, Isoprene, Dimethylsiloxane, and 2-Vinylpyridine. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 514–519. [Google Scholar] [CrossRef]
- Hur, Y.H.; Song, S.W.; Kim, J.M.; Park, W.I.; Kim, K.H.; Kim, Y.J.; Jung, Y.S. Thermodynamic and Kinetic Tuning of Block Copolymer Based on Random Copolymerization for High-Quality Sub-6 Nm Pattern Formation. Adv. Funct. Mater. 2018, 28, 1800765. [Google Scholar] [CrossRef]
- Cho, H.; Kim, S.; Park, S. Fabrication of Gold Nanoparticles and Silicon Oxide Corpuscles from Block Copolymers. J. Mater. Chem. 2010, 20, 1156–1160. [Google Scholar] [CrossRef]
- Shi, L.Y.; Lei, W.W.; Liao, F.; Chen, J.; Wu, M.; Zhang, Y.Y.; Hu, C.X.; Xing, L.; Zhang, Y.L.; Ran, R. H-Bonding Tuned Phase Transitions of a Strong Microphase-Separated Polydimethylsiloxane-b-Poly(2-Vinylpyridine) Block Copolymer. Polymer 2018, 153, 277–286. [Google Scholar] [CrossRef]
- Hadjichristidis, N.; Iatrou, H.; Pispas, S.; Pitsikalis, M. Anionic Polymerization: High Vacuum Techniques. J. Polym. Sci. Part A Polym. Chem. 2000, 38, 3211–3234. [Google Scholar] [CrossRef]
- Angelopoulou, P.P.; Kearney, L.T.; Keum, J.K.; Collins, L.; Kumar, R.; Sakellariou, G.; Advincula, R.C.; Mays, J.W.; Hong, K. High-χ Diblock Copolymers Containing Poly(Vinylpyridine-N-Oxide) Segments. J. Mater. Chem. A 2023, 11, 9846–9858. [Google Scholar] [CrossRef]
- Moutsios, I.; Ntetsikas, K.; Manesi, G.-M.; Liontos, G.; Nikitina, E.A.; Chang, C.-Y.; Vidal, L.; Hadjichristidis, N.; Ho, R.-M.; Ivanov, D.A.; et al. Defining Morphological Transformations of “Soft Nature” Diblock Viscoelastic Structured Polymers. Macromolecules 2023, 56, 6232–6246. [Google Scholar] [CrossRef]
- Uhrig, D.; Mays, J.W. Experimental Techniques in High-Vacuum Anionic Polymerization. J. Polym. Sci. Part A Polym. Chem. 2005, 43, 6179–6222. [Google Scholar] [CrossRef]
- Liontos, G.; Manesi, G.M.; Moutsios, I.; Moschovas, D.; Piryazev, A.A.; Bersenev, E.A.; Ivanov, D.A.; Avgeropoulos, A. Synthesis, Molecular Characterization, and Phase Behavior of Miktoarm Star Copolymers of the ABn and AnB (n = 2 or 3) Sequences, Where A Is Polystyrene and B Is Poly(Dimethylsiloxane). Macromolecules 2022, 55, 88–99. [Google Scholar] [CrossRef]
- Klonos, P.A. Crystallization, Glass Transition, and Molecular Dynamics in PDMS of Low Molecular Weights: A Calorimetric and Dielectric Study. Polymer 2018, 159, 169–180. [Google Scholar] [CrossRef]
- Aranguren, M.I. Crystallization of Polydimethylsiloxane: Effect of Silica Filler and Curing. Polymer 1998, 39, 4897–4903. [Google Scholar] [CrossRef]
- Lee, J.N.; Park, C.; Whitesides, G.M. Solvent Compatibility of Poly(Dimethylsiloxane)-Based Microfluidic Devices. Anal. Chem. 2003, 75, 6544–6554. [Google Scholar] [CrossRef]
Sample | PDMS (a) (g/mol) SEC/VPO or MO | P2VP (a) (g/mol) SEC/VPO or MO | TOTAL (a) (g/mol) SEC/VPO or MO | ĐTOTAL (a) SEC | fPDMS (b) 1H-NMR | φPDMS (b) | TgPDMS (c) (°C) | TgP2VP (c) (°C) |
---|---|---|---|---|---|---|---|---|
DVP-1 | 5300 | 4500 | 9800 | 1.06 | 0.55 | 0.54 | −125.8 | 84.6 |
DVP-2 | 15,500 | 7000 | 22,500 | 1.05 | 0.68 | 0.67 | −124.0 | 87.1 |
DVP-3 | 6000 | 30,000 | 36,000 | 1.04 | 0.16 | 0.15 | −122.0 | 102.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manesi, G.-M.; Moutsios, I.; Moschovas, D.; Papadopoulos, G.; Ntaras, C.; Rosenthal, M.; Vidal, L.; Ageev, G.G.; Ivanov, D.A.; Avgeropoulos, A. Synthesis and Structural Insight into poly(dimethylsiloxane)-b-poly(2-vinylpyridine) Copolymers. Polymers 2023, 15, 4227. https://doi.org/10.3390/polym15214227
Manesi G-M, Moutsios I, Moschovas D, Papadopoulos G, Ntaras C, Rosenthal M, Vidal L, Ageev GG, Ivanov DA, Avgeropoulos A. Synthesis and Structural Insight into poly(dimethylsiloxane)-b-poly(2-vinylpyridine) Copolymers. Polymers. 2023; 15(21):4227. https://doi.org/10.3390/polym15214227
Chicago/Turabian StyleManesi, Gkreti-Maria, Ioannis Moutsios, Dimitrios Moschovas, Georgios Papadopoulos, Christos Ntaras, Martin Rosenthal, Loic Vidal, Georgiy G. Ageev, Dimitri A. Ivanov, and Apostolos Avgeropoulos. 2023. "Synthesis and Structural Insight into poly(dimethylsiloxane)-b-poly(2-vinylpyridine) Copolymers" Polymers 15, no. 21: 4227. https://doi.org/10.3390/polym15214227
APA StyleManesi, G. -M., Moutsios, I., Moschovas, D., Papadopoulos, G., Ntaras, C., Rosenthal, M., Vidal, L., Ageev, G. G., Ivanov, D. A., & Avgeropoulos, A. (2023). Synthesis and Structural Insight into poly(dimethylsiloxane)-b-poly(2-vinylpyridine) Copolymers. Polymers, 15(21), 4227. https://doi.org/10.3390/polym15214227