Nanocellulose from Cocoa Shell in Pickering Emulsions of Cocoa Butter in Water: Effect of Isolation and Concentration on Its Stability and Rheological Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of Nanocellulose
2.2. Emulsions Formulation
2.3. Nanocellulose Characterization
2.3.1. Attenuated Total Reflection–Fourier Transform Infrared Spectroscopy (ATR–FTIR)
2.3.2. Nanocellulose Extractives
2.3.3. Atomic Force Microscopy (AFM)
2.3.4. Degree of Polymerization (DP)
2.3.5. Rheological Analysis
2.4. Emulsion Characterization
2.4.1. Physical Stability
2.4.2. Fluorescent Microscopy
2.4.3. Scanning Electron Microscopy
2.4.4. Rheological Analysis
2.4.5. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Characterization of CNFs: C1 and C2
3.2. Physicochemical Characterization of Pickering Emulsions Stabilized with Different Concentrations of CNFs: PEC1 0.7, PEC1 1.0, PEC2 0.7, and PEC2 1.0
- The use of cocoa butter in water Pickering emulsions in the food industry offers several key advantages: reduced caloric density of products [105], the potential for incorporating active ingredients to enhance nutritional value [106], and lowered production costs due to reduced raw material usage [100]. However, further research is required in this field, particularly concerning the crystallization of cocoa butter with the integration of new active compounds.
- The formulation of innovative aqueous-based products, such as nano-delivery systems and edible coatings, can be developed using stable cocoa butter-in-water emulsions. This approach leverages the antioxidant, moisturizing, and barrier properties of cocoa butter, which is widely utilized in the food, pharmaceutical, and cosmetic industries [107].
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turbak, A.F.; Snyder, F.W.; Sandberg, K.R. Microfibrillated Cellulose, a New Cellulose Product: Properties, Uses, and Commercial Potential. J. Appl. Polym. Sci. Appl. Polym. Symp. 1983, 37, 815–827. [Google Scholar]
- Liu, L.; Kerr, W.L.; Kong, F.; Dee, D.R.; Lin, M. Influence of Nano-Fibrillated Cellulose (NFC) on Starch Digestion and Glucose Absorption. Carbohydr. Polym. 2018, 196, 146–153. [Google Scholar] [CrossRef]
- Yan, J.; Hu, J.; Yang, R.; Zhang, Z.; Zhao, W. Innovative Nanofibrillated Cellulose from Rice Straw as Dietary Fiber for Enhanced Health Benefits Prepared by a Green and Scale Production Method. ACS Sustain. Chem. Eng. 2018, 6, 3481–3492. [Google Scholar] [CrossRef]
- DeLoid, G.M.; Cao, X.; Molina, R.M.; Silva, D.I.; Bhattacharya, K.; Ng, K.W.; Loo, S.C.J.; Brain, J.D.; Demokritou, P. Toxicological Effects of Ingested Nanocellulose in in Vitro Intestinal Epithelium and in Vivo Rat Models. Environ. Sci. Nano 2019, 6, 2105–2115. [Google Scholar] [CrossRef]
- Dufresne, A.; Dupeyre, D.; Vignon, M.R. Cellulose Microfibrils from Potato Tuber Cells: Processing and Characterization of Starch–Cellulose Microfibril Composites. J. Appl. Polym. Sci. 2000, 76, 2080–2092. [Google Scholar] [CrossRef]
- FDA GRAS Notice for Fibrillated Cellulose 2020. Available online: https://www.fda.gov/media/153020/download (accessed on 28 April 2023).
- International Tropical Timber Organization. The Economic Linkages between the International Trade in Tropical Timber and the Sustainable Management of Tropical Forests; London Environmental Economics Centre, International Institute for Environment and Development: London, UK, 1993. [Google Scholar]
- FAO. Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/faostat/en/#search/Cocoa%2C (accessed on 28 April 2023).
- Okiyama, D.C.G.; Navarro, S.L.B.; Rodrigues, C.E.C. Cocoa Shell and Its Compounds: Applications in the Food Industry. Trends Food Sci. Technol. 2017, 63, 103–112. [Google Scholar] [CrossRef]
- Gómez Hoyos, C.; Mazo Márquez, P.; Penagos Vélez, L.; Serpa Guerra, A.; Eceiza, A.; Urbina, L.; Velásquez-Cock, J.; Gañán Rojo, P.; Vélez Acosta, L.; Zuluaga, R. Cocoa Shell: An Industrial by-Product for the Preparation of Suspensions of Holocellulose Nanofibers and Fat. Cellulose 2020, 27, 10873–10884. [Google Scholar] [CrossRef]
- Dickinson, E. Use of Nanoparticles and Microparticles in the Formation and Stabilization of Food Emulsions. Trends Food Sci. Technol. 2012, 24, 4–12. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, J.; Chen, J.; Li, B.; Li, Y.; Liu, S. Edible Foam Based on Pickering Effect of Bacterial Cellulose Nanofibrils and Soy Protein Isolates Featuring Interfacial Network Stabilization. Food Hydrocoll. 2020, 100, 105440. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, D.; Shen, R.; Yang, X. Bacterial Cellulose Nanofibers Improved the Emulsifying Capacity of Soy Protein Isolate as a Stabilizer for Pickering High Internal-Phase Emulsions. Food Hydrocoll. 2021, 112, 106279. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Wang, Y.; Luo, X.; Li, Y.; Li, B.; Wang, J.; Liu, S. Surface Modification of Cellulose Nanofibrils with Protein Nanoparticles for Enhancing the Stabilization of O/W Pickering Emulsions. Food Hydrocoll. 2019, 97, 105180. [Google Scholar] [CrossRef]
- Lv, S.; Zhou, H.; Bai, L.; Rojas, O.J.; McClements, D.J. Development of Food-Grade Pickering Emulsions Stabilized by a Mixture of Cellulose Nanofibrils and Nanochitin. Food Hydrocoll. 2021, 113, 106451. [Google Scholar] [CrossRef]
- Vieira, S.A.; McClements, D.J.; Decker, E.A. Challenges of Utilizing Healthy Fats in Foods. Adv. Nutr. 2015, 6, 309S–317S. [Google Scholar] [CrossRef] [PubMed]
- Mcclements, D.J. Critical Review of Techniques and Methodologies for Characterization of Emulsion Stability. Crit. Rev. Food Sci. Nutr. 2007, 47, 611–649. [Google Scholar] [CrossRef]
- Fredrick, E.; Walstra, P.; Dewettinck, K. Factors Governing Partial Coalescence in Oil-in-Water Emulsions. Adv. Colloid Interface Sci. 2010, 153, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Wang, X.; Perez Gonzalez, A.J.; Huang, Q. Kafirin Nanoparticles-Stabilized Pickering Emulsions: Microstructure and Rheological Behavior. Food Hydrocoll. 2016, 54, 30–39. [Google Scholar] [CrossRef]
- Chen, J.; Vogel, R.; Werner, S.; Heinrich, G.; Clausse, D.; Dutschk, V. Influence of the Particle Type on the Rheological Behavior of Pickering Emulsions. Colloids Surf. Physicochem. Eng. Asp. 2011, 382, 238–245. [Google Scholar] [CrossRef]
- Xu, W.; Zheng, S.; Xi, W.; Sun, H.; Ning, Y.; Jia, Y.; Luo, D.; Li, Y.; Shah, B.R. Stability, Rheological Properties and Microstructure of Pickering Emulsions Stabilized by Different Concentration of Glidian/Sodium Caseinate Nanoparticles Using Konjac Glucomannan as Structural Regulator. Food Struct. 2022, 33, 100285. [Google Scholar] [CrossRef]
- Velásquez-Cock, J.; Serpa, A.M.; Gómez-Hoyos, C.; Gañán, P.; Romero-Sáez, M.; Vélez, L.M.; Correa-Hincapié, N.; Zuluaga, R. Influence of a Non-Ionic Surfactant in the Microstructure and Rheology of a Pickering Emulsion Stabilized by Cellulose Nanofibrils. Polymers 2021, 13, 3625. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Gao, H.; Liu, W.; Zou, L.; McClements, D.J. A Review of the Rheological Properties of Dilute and Concentrated Food Emulsions. J. Texture Stud. 2020, 51, 45–55. [Google Scholar] [CrossRef]
- Hindle, S.; Povey, M.J.; Smith, K. Kinetics of Crystallization in N-Hexadecane and Cocoa Butter Oil-in-Water Emulsions Accounting for Droplet Collision-Mediated Nucleation. J. Colloid Interface Sci. 2000, 232, 370–380. [Google Scholar] [CrossRef]
- Hindle, S.A.; Povey, M.J.W.; Smith, K.W. Characterizing Cocoa Butter Seed Crystals by the Oil-in-Water Emulsion Crystallization Method. J. Am. Oil Chem. Soc. 2002, 79, 993–1002. [Google Scholar] [CrossRef]
- You, S.; Huang, Q.; Lu, X. Development of Fat-Reduced 3D Printed Chocolate by Substituting Cocoa Butter with Water-in-Oil Emulsions. Food Hydrocoll. 2023, 135, 108114. [Google Scholar] [CrossRef]
- Stortz, T.A.; Zetzl, A.K.; Barbut, S.; Cattaruzza, A.; Marangoni, A.G. Edible Oleogels in Food Products to Help Maximize Health Benefits and Improve Nutritional Profiles. Lipid Technol. 2012, 24, 151–154. [Google Scholar] [CrossRef]
- Kalashnikova, I.; Bizot, H.; Bertoncini, P.; Cathala, B.; Capron, I. Cellulosic Nanorods of Various Aspect Ratios for Oil in Water Pickering Emulsions. Soft Matter 2012, 9, 952–959. [Google Scholar] [CrossRef]
- Lu, Y.; Li, J.; Ge, L.; Xie, W.; Wu, D. Pickering Emulsion Stabilized with Fibrous Nanocelluloses: Insight into Fiber Flexibility-Emulsifying Capacity Relations. Carbohydr. Polym. 2021, 255, 117483. [Google Scholar] [CrossRef]
- Gómez, H.C.; Serpa, A.; Velásquez-Cock, J.; Gañán, P.; Castro, C.; Vélez, L.; Zuluaga, R. Vegetable Nanocellulose in Food Science: A Review. Food Hydrocoll. 2016, 57, 178–186. [Google Scholar] [CrossRef]
- Ström, G.; Öhgren, C.; Ankerfors, M. Nanocellulose as an Additive in Foodstuff. Innventia Rep. 2013, 403, 1–25. [Google Scholar]
- Velásquez-Cock, J.; Serpa, A.; Vélez, L.; Gañán, P.; Gómez Hoyos, C.; Castro, C.; Duizer, L.; Goff, H.D.; Zuluaga, R. Influence of Cellulose Nanofibrils on the Structural Elements of Ice Cream. Food Hydrocoll. 2019, 87, 204–213. [Google Scholar] [CrossRef]
- Zuluaga, R.; Putaux, J.L.; Cruz, J.; Vélez, J.; Mondragon, I.; Gañán, P. Cellulose Microfibrils from Banana Rachis: Effect of Alkaline Treatments on Structural and Morphological Features. Carbohydr. Polym. 2009, 76, 51–59. [Google Scholar] [CrossRef]
- Velásquez-Cock, J.; Gañán, P.; Posada, P.; Castro, C.; Serpa, A.; Gómez, H.C.; Putaux, J.-L.; Zuluaga, R. Influence of Combined Mechanical Treatments on the Morphology and Structure of Cellulose Nanofibrils: Thermal and Mechanical Properties of the Resulting Films. Ind. Crops Prod. 2016, 85, 1–10. [Google Scholar] [CrossRef]
- Cui, L.; Yi, L.; Wang, Y.; Zhang, Y.; Polyák, P.; Sui, X.; Pukánszky, B. Rheology of PLA/Regenerated Cellulose Nanocomposites Prepared by the Pickering Emulsion Process: Network Formation and Modeling. Mater. Des. 2021, 206, 109774. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, L.; Xu, H.; Feng, X.; Wang, B.; Pukánszky, B.; Mao, Z.; Sui, X. Poly(Lactic Acid)/Cellulose Nanocrystal Composites via the Pickering Emulsion Approach: Rheological, Thermal and Mechanical Properties. Int. J. Biol. Macromol. 2019, 137, 197–204. [Google Scholar] [CrossRef]
- ISO 5351:2010; Determination of limiting viscosity number in cupri-ethylenediamine (CED) solution. International Organization for Standardization: Geneva, Switzerland, 2010.
- Marx-Figini, M. Significance of the Intrinsic Viscosity Ratio of Unsubstituted and Nitrated Cellulose in Different Solvents. Angew. Makromol. Chem. 1978, 72, 161–171. [Google Scholar] [CrossRef]
- Jiménez Saelices, C.; Capron, I. Design of Pickering Micro- and Nanoemulsions Based on the Structural Characteristics of Nanocelluloses. Biomacromolecules 2018, 19, 460–469. [Google Scholar] [CrossRef] [PubMed]
- Liao, J. Rheological Characterization of Cellulose Nanomaterials for Quality Control and Processing; AIChE: New York, NY, USA, 2021. [Google Scholar]
- Nechyporchuk, O.; Belgacem, M.N.; Pignon, F. Current Progress in Rheology of Cellulose Nanofibril Suspensions. Biomacromolecules 2016, 17, 2311–2320. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Lv, S.; Xiang, W.; Huan, S.; McClements, D.J.; Rojas, O.J. Oil-in-Water Pickering Emulsions via Microfluidization with Cellulose Nanocrystals: 1. Formation and Stability. Food Hydrocoll. 2019, 96, 699–708. [Google Scholar] [CrossRef]
- Bai, L.; Huan, S.; Xiang, W.; Rojas, O.J. Pickering Emulsions by Combining Cellulose Nanofibrils and Nanocrystals: Phase Behavior and Depletion Stabilization. Green Chem. 2018, 20, 1571–1582. [Google Scholar] [CrossRef]
- Perrin, L.; Gillet, G.; Gressin, L.; Desobry, S. Interest of Pickering Emulsions for Sustainable Micro/Nanocellulose in Food and Cosmetic Applications. Polymers 2020, 12, 2385. [Google Scholar] [CrossRef]
- Popescu, C.-M.; Popescu, M.-C.; Singurel, G.; Vasile, C.; Argyropoulos, D.S.; Willfor, S. Spectral Characterization of Eucalyptus Wood. Appl. Spectrosc. 2007, 61, 1168–1177. [Google Scholar] [CrossRef]
- Safar, M.; Bertrand, D.; Robert, P.; Devaux, M.F.; Genot, C. Characterization of Edible Oils, Butters and Margarines by Fourier Transform Infrared Spectroscopy with Attenuated Total Reflectance. J. Am. Oil Chem. Soc. 1994, 71, 371–377. [Google Scholar] [CrossRef]
- Che Man, Y.B.; Syahariza, Z.A.; Mirghani, M.E.S.; Jinap, S.; Bakar, J. Analysis of Potential Lard Adulteration in Chocolate and Chocolate Products Using Fourier Transform Infrared Spectroscopy. Food Chem. 2005, 90, 815–819. [Google Scholar] [CrossRef]
- Gorshkova, T.A.; Mikshina, P.V.; Gurjanov, O.P.; Chemikosova, S.B. Formation of Plant Cell Wall Supramolecular Structure. Biochem. Mosc. 2010, 75, 159–172. [Google Scholar] [CrossRef] [PubMed]
- Tarasov, D.; Leitch, M.; Fatehi, P. Lignin–Carbohydrate Complexes: Properties, Applications, Analyses, and Methods of Extraction: A Review. Biotechnol. Biofuels 2018, 11, 269. [Google Scholar] [CrossRef] [PubMed]
- Farhat, W.; Venditti, R.; Quick, A.; Taha, M.; Mignard, N.; Becquart, F.; Ayoub, A. Hemicellulose Extraction and Characterization for Applications in Paper Coatings and Adhesives. Ind. Crops Prod. 2017, 107, 370–377. [Google Scholar] [CrossRef]
- El-Saied, H.M.; Morsi, M.K.; Amer, M.M. Composition of Cocoa Shell Fat as Related to Cocoa Butter. Z. Ernahrungswiss. 1981, 20, 145–151. [Google Scholar] [CrossRef]
- Passos, C.P.; Yilmaz, S.; Silva, C.M.; Coimbra, M.A. Enhancement of Grape Seed Oil Extraction Using a Cell Wall Degrading Enzyme Cocktail. Food Chem. 2009, 115, 48–53. [Google Scholar] [CrossRef]
- Femenia, A.; García-Marín, M.; Simal, S.; Rosselló, C.; Blasco, M. Effects of Supercritical Carbon Dioxide (SC-CO(2)) Oil Extraction on the Cell Wall Composition of Almond Fruits. J. Agric. Food Chem. 2001, 49, 5828–5834. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, H.; Núñez, M.J.; Lema, J.M. Enzymatic Pretreatment to Enhance Oil Extraction from Fruits and Oilseeds: A Review. Food Chem. 1994, 49, 271–286. [Google Scholar] [CrossRef]
- Standard Method T204 Cm-97; Solvent Extractives of Wood and Pulp. TAPPI: Atlanta, GA, USA, 2007.
- Standard Method T207 Cm-99; Water Solubility of Wood and Pulp. TAPPI: Atlanta, GA, USA, 1999.
- Abidi, N.; Hequet, E.; Cabrales, L.; Abidi, N.; Hequet, E.; Cabrales, L. Applications of Fourier Transform Infrared Spectroscopy to Study Cotton Fibers. In Fourier Transforms-New Analytical Approaches and FTIR Strategies; IntechOpen: London, UK, 2011; ISBN 978-953-307-232-6. [Google Scholar]
- Kataoka, Y.; Kondo, T. Changing Cellulose Crystalline Structure in Forming Wood Cell Walls. Macromolecules 1996, 29, 6356–6358. [Google Scholar] [CrossRef]
- Sugiyama, J.; Persson, J.; Chanzy, H. Combined Infrared and Electron Diffraction Study of the Polymorphism of Native Celluloses. Macromolecules 1991, 24, 2461–2466. [Google Scholar] [CrossRef]
- Fengel, D. Characterization of Cellulose by Deconvoluting the OH Valency Range in FTIR Spectra. Holzforschung 1992, 46, 283–288. [Google Scholar] [CrossRef]
- Marchessault, R.H.; Pearson, F.G.; Liang, C.Y. Infrared Spectra of Crystalline Polysaccharides. Biochim. Biophys. Acta 1960, 45, 499. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, J.; Vuong, R.; Chanzy, H. Electron Diffraction Study on the Two Crystalline Phases Occurring in Native Cellulose from an Algal Cell Wall. Macromolecules 1991, 24, 4168–4175. [Google Scholar] [CrossRef]
- Dang, V.; Nguyen, K.L. Characterisation of the Heterogeneous Alkaline Pulping Kinetics of Hemp Woody Core. Bioresour. Technol. 2006, 97, 1353–1359. [Google Scholar] [CrossRef]
- Suess, H.U. Pulp Bleaching Today. In Pulp Bleaching Today; De Gruyter: Berlin, Germany, 2010; ISBN 978-3-11-021824-4. [Google Scholar]
- Ek, M.; Gellerstedt, G.; Henriksson, G. Pulping Chemistry and Technology. In Pulping Chemistry and Technology; De Gruyter: Berlin, Germany, 2009; Volume 2, ISBN 978-3-11-021342-3. [Google Scholar]
- Gómez, C.; Zuluaga, R.; Putaux, J.-L.; Mondragon, I.; Castro, C.; Gañán, P. Surface Free Energy of Films of Alkali-Treated Cellulose Microfibrils from Banana Rachis. Compos. Interfaces 2012, 19, 29–37. [Google Scholar] [CrossRef]
- Nasir, M.; Hashim, R.; Sulaiman, O.; Asim, M. Nanocellulose: Preparation Methods and Applications. In Cellulose-Reinforced Nanofibre Composites; Elsevier: Amsterdam, The Netherlands, 2017; pp. 261–276. ISBN 978-0-08-100957-4. [Google Scholar]
- Benítez, A.J.; Walther, A. Cellulose Nanofibril Nanopapers and Bioinspired Nanocomposites: A Review to Understand the Mechanical Property Space. J. Mater. Chem. A 2017, 5, 16003–16024. [Google Scholar] [CrossRef]
- Li, Q.; Wu, Y.; Fang, R.; Lei, C.; Li, Y.; Li, B.; Pei, Y.; Luo, X.; Liu, S. Application of Nanocellulose as Particle Stabilizer in Food Pickering Emulsion: Scope, Merits and Challenges. Trends Food Sci. Technol. 2021, 110, 573–583. [Google Scholar] [CrossRef]
- Sun, J.X.; Sun, X.F.; Zhao, H.; Sun, R.C. Isolation and Characterization of Cellulose from Sugarcane Bagasse. Polym. Degrad. Stab. 2004, 84, 331–339. [Google Scholar] [CrossRef]
- Yuan, T.; Zeng, J.; Wang, B.; Cheng, Z.; Chen, K. Pickering Emulsion Stabilized by Cellulosic Fibers: Morphological Properties-Interfacial Stabilization-Rheological Behavior Relationships. Carbohydr. Polym. 2021, 269, 118339. [Google Scholar] [CrossRef]
- Li, M.-C.; Wu, Q.; Song, K.; Lee, S.; Qing, Y.; Wu, Y. Cellulose Nanoparticles: Structure–Morphology–Rheology Relationships. ACS Sustain. Chem. Eng. 2015, 3, 821–832. [Google Scholar] [CrossRef]
- Klemm, D.; Heublein, B.; Fink, H.-P.; Bohn, A. Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angew. Chem. Int. Ed. 2005, 44, 3358–3393. [Google Scholar] [CrossRef]
- Hubbell, C.A.; Ragauskas, A.J. Effect of Acid-Chlorite Delignification on Cellulose Degree of Polymerization. Bioresour. Technol. 2010, 101, 7410–7415. [Google Scholar] [CrossRef]
- Foston, M.B.; Hubbell, C.A.; Ragauskas, A.J. Cellulose Isolation Methodology for NMR Analysis of Cellulose Ultrastructure. Materials 2011, 4, 1985–2002. [Google Scholar] [CrossRef] [PubMed]
- Spiliopoulos, P.; Spirk, S.; Pääkkönen, T.; Viljanen, M.; Svedström, K.; Pitkänen, L.; Awais, M.; Kontturi, E. Visualizing Degradation of Cellulose Nanofibers by Acid Hydrolysis. Biomacromolecules 2021, 22, 1399–1405. [Google Scholar] [CrossRef] [PubMed]
- Moberg, T.; Sahlin, K.; Yao, K.; Geng, S.; Westman, G.; Zhou, Q.; Oksman, K.; Rigdahl, M. Rheological Properties of Nanocellulose Suspensions: Effects of Fibril/Particle Dimensions and Surface Characteristics. Cellulose 2017, 24, 2499–2510. [Google Scholar] [CrossRef]
- Saarinen, T.; Lille, M.; Seppälä, J. Technical Aspects on Rheological Characterization of Microfibrillar Cellulose Water Suspensions: Nordic Rheology Conference. Annu. Trans. Nord. Rheol. Soc. 2009, 17, 121–128. [Google Scholar]
- Pääkkö, M.; Ankerfors, M.; Kosonen, H.; Nykänen, A.; Ahola, S.; Österberg, M.; Ruokolainen, J.; Laine, J.; Larsson, P.T.; Ikkala, O.; et al. Enzymatic Hydrolysis Combined with Mechanical Shearing and High-Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels. Biomacromolecules 2007, 8, 1934–1941. [Google Scholar] [CrossRef]
- Cinar Ciftci, G.; Larsson, P.A.; Riazanova, A.V.; Øvrebø, H.H.; Wågberg, L.; Berglund, L.A. Tailoring of Rheological Properties and Structural Polydispersity Effects in Microfibrillated Cellulose Suspensions. Cellulose 2020, 27, 9227–9241. [Google Scholar] [CrossRef]
- Czaikoski, A.; da Cunha, R.L.; Menegalli, F.C. Rheological Behavior of Cellulose Nanofibers from Cassava Peel Obtained by Combination of Chemical and Physical Processes. Carbohydr. Polym. 2020, 248, 116744. [Google Scholar] [CrossRef]
- Grüneberger, F.; Künniger, T.; Zimmermann, T.; Arnold, M. Rheology of Nanofibrillated Cellulose/Acrylate Systems for Coating Applications. Cellulose 2014, 21, 1313–1326. [Google Scholar] [CrossRef]
- Guenet, J.-M. Structure versus Rheological Properties in Fibrillar Thermoreversible Gels from Polymers and Biopolymers. J. Rheol. 2000, 44, 947–960. [Google Scholar] [CrossRef]
- Nechyporchuk, O.; Belgacem, M.N.; Pignon, F. Rheological Properties of Micro-/Nanofibrillated Cellulose Suspensions: Wall-Slip and Shear Banding Phenomena. Carbohydr. Polym. 2014, 112, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Saarinen, T.; Haavisto, S.; Sorvari, A.; Salmela, J.; Seppälä, J. The Effect of Wall Depletion on the Rheology of Microfibrillated Cellulose Water Suspensions by Optical Coherence Tomography. Cellulose 2014, 21, 1261–1275. [Google Scholar] [CrossRef]
- Tanaka, R.; Saito, T.; Hänninen, T.; Ono, Y.; Hakalahti, M.; Tammelin, T.; Isogai, A. Viscoelastic Properties of Core–Shell-Structured, Hemicellulose-Rich Nanofibrillated Cellulose in Dispersion and Wet-Film States. Biomacromolecules 2016, 17, 2104–2111. [Google Scholar] [CrossRef] [PubMed]
- de Souza, A.G.; Ferreira, R.R.; Aguilar, E.S.F.; Zanata, L.; Rosa, D. dos S. Cinnamon Essential Oil Nanocellulose-Based Pickering Emulsions: Processing Parameters Effect on Their Formation, Stabilization, and Antimicrobial Activity. Polysaccharides 2021, 2, 608–625. [Google Scholar] [CrossRef]
- Gyedu-Akoto, E.; Amon-Armah, F.; Oddoye, E. Production and Marketing of Cocoa Butter and Shea Butter Based Body Pomades as A Small Scale Business in Ghana. Asian J. Bus. Manag. 2015, 3. [Google Scholar] [CrossRef]
- Coupland, J.N. Crystallization of Lipids in Oil-in-Water Emulsion States. In Crystallization of Lipids; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018; pp. 431–443. ISBN 978-1-118-59388-2. [Google Scholar]
- Buldo, P.; Kirkensgaard, J.J.K.; Wiking, L. Crystallization Mechanisms in Cream during Ripening and Initial Butter Churning. J. Dairy Sci. 2013, 96, 6782–6791. [Google Scholar] [CrossRef]
- Tang, C.; Chen, Y.; Luo, J.; Low, M.Y.; Shi, Z.; Tang, J.; Zhang, Z.; Peng, B.; Tam, K.C. Pickering Emulsions Stabilized by Hydrophobically Modified Nanocellulose Containing Various Structural Characteristics. Cellulose 2019, 26, 7753–7767. [Google Scholar] [CrossRef]
- Manning, D.; Dimick, P. Crystal Morphology of Cocoa Butter. Food Struct. 1985, 4, 249–265. [Google Scholar]
- Serpa Guerra, A.M.; Gómez Hoyos, C.; Velásquez-Cock, J.A.; Gañán Rojo, P.; Eceiza, A.; Urbina, L.; Zuluaga, R. Cellulose Nanofibers from Banana Rachis Added to a Curcuma Longa L. Rhizome Suspension: Color, Stability and Rheological Properties. Food Struct. 2021, 27, 100180. [Google Scholar] [CrossRef]
- Malkin, A.Y.; Derkach, S.R.; Kulichikhin, V.G. Rheology of Gels and Yielding Liquids. Gels 2023, 9, 715. [Google Scholar] [CrossRef] [PubMed]
- Peressini, D.; Sensidoni, A.; de Cindio, B. Rheological Characterization of Traditional and Light Mayonnaises. J. Food Eng. 1998, 35, 409–417. [Google Scholar] [CrossRef]
- Dickinson, E.; Golding, M. Rheology of Sodium Caseinate Stabilized Oil-in-Water Emulsions. J. Colloid Interface Sci. 1997, 191, 166–176. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, Y.; Yuan, F.; Gao, Y.; Mao, L. Emulsion Gels with Different Proteins at the Interface: Structures and Delivery Functionality. Food Hydrocoll. 2021, 116, 106637. [Google Scholar] [CrossRef]
- Liu, C.; Xu, Y.; Xia, W.; Jiang, Q. Enhancement of Storage Stability of Surimi Particles Stabilized Novel Pickering Emulsions: Effect of Different Sequential Ultrasonic Processes. Ultrason. Sonochem. 2021, 79, 105802. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Qiu, C.; Jin, Z.; Qin, Y.; Zhan, C.; Xu, X.; Wang, J. Pickering Emulsions with Enhanced Storage Stabilities by Using Hybrid β-Cyclodextrin/Short Linear Glucan Nanoparticles as Stabilizers. Carbohydr. Polym. 2020, 229, 115418. [Google Scholar] [CrossRef] [PubMed]
- Ewens, H.; Metilli, L.; Simone, E. Analysis of the Effect of Recent Reformulation Strategies on the Crystallization Behaviour of Cocoa Butter and the Structural Properties of Chocolate. Curr. Res. Food Sci. 2021, 4, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Ueno, S. Crystallization, Transformation and Microstructures of Polymorphic Fats in Colloidal Dispersion States. Curr. Opin. Colloid Interface Sci. 2011, 16, 384–390. [Google Scholar] [CrossRef]
- Coupland, J.N. Crystallization in Emulsions. Curr. Opin. Colloid Interface Sci. 2002, 7, 445–450. [Google Scholar] [CrossRef]
- Arima, S.; Ueno, S.; Ogawa, A.; Sato, K. Scanning Microbeam Small-Angle X-Ray Diffraction Study of Interfacial Heterogeneous Crystallization of Fat Crystals in Oil-in-Water Emulsion Droplets. Langmuir 2009, 25, 9777–9784. [Google Scholar] [CrossRef]
- Dhonsi, D.; Stapley, A.G.F. The Effect of Shear Rate, Temperature, Sugar and Emulsifier on the Tempering of Cocoa Butter. J. Food Eng. 2006, 77, 936–942. [Google Scholar] [CrossRef]
- Di Bari, V.; Macnaughtan, W.; Norton, J.; Sullo, A.; Norton, I. Crystallisation in Water-in-Cocoa Butter Emulsions: Role of the Dispersed Phase on Fat Crystallisation and Polymorphic Transition. Food Struct. 2017, 12, 82–93. [Google Scholar] [CrossRef]
- Salminen, H.; Stübler, A.S.; Weiss, J. Preparation, Characterization, and Physical Stability of Cocoa Butter and Tristearin Nanoparticles Containing β-Carotene. Eur. Food Res. Technol. 2020, 246, 599–608. [Google Scholar] [CrossRef]
- Ramos-de-la-Peña, A.M.; Aguilar, O.; González-Valdez, J. Progress in Nanostructure Understanding of Edible Crystalline Fats and Their Application in Nano-Delivery Systems: Cocoa Butter as a Model. Food Res. Int. 2021, 147, 110561. [Google Scholar] [CrossRef] [PubMed]
Sample | Description |
---|---|
PEC1 0.7 | PEs stabilized with 0.7 wt % of C1 CNFs |
PEC1 1.0 | PEs stabilized with 1.0 wt % of C1 CNFs |
PEC2 0.7 | PEs with 0.7 wt % of C2 CNFs |
PEC2 1.0 | PEs stabilized with 1.0 wt % of C2 CNFs |
Sample | Water Extractables (%) | Organic Extractables (%) | Total Extraction (%) | DP |
---|---|---|---|---|
Cocoa shell | 25.52 ± 2.74 | 27.68 ± 2.96 | 53.20 ± 2.74 | N/A |
C1 | 10.74 ± 1.66 | 11.80 ± 1.9 | 22.53 ± 3.53 | 1098.52 ± 1.10 |
C2 | 4.86 ± 0.14 | 5.66 ± 0.22 | 10.53 ± 0.32 | 554.31 ± 1.67 |
Wavenumber (cm−1) | Absorbances (a.u.) | Description | References | |
---|---|---|---|---|
C1 | C2 | |||
3405 | 1.1510 | 0.7503 | O(2)H⋯O(5) intermolecular bonding | [62] |
3335 | 1.5017 | 0.8003 | Intramolecular contribution | |
3350 | 1.2120 | 0.8033 | OH stretching (intramolecular hydrogen bonds) | [61] |
3285 | 1.1282 | 0.7271 | O(6)H⋯O(3) intermolecular bonding | [61] |
3305 | 1.1565 | 0.7534 | OH stretching (intermolecular hydrogenbonds in the 101 plane) | [61,62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez Hoyos, C.; Botero, L.D.; Flórez-Caro, A.; Velásquez-Cock, J.A.; Zuluaga, R. Nanocellulose from Cocoa Shell in Pickering Emulsions of Cocoa Butter in Water: Effect of Isolation and Concentration on Its Stability and Rheological Properties. Polymers 2023, 15, 4157. https://doi.org/10.3390/polym15204157
Gómez Hoyos C, Botero LD, Flórez-Caro A, Velásquez-Cock JA, Zuluaga R. Nanocellulose from Cocoa Shell in Pickering Emulsions of Cocoa Butter in Water: Effect of Isolation and Concentration on Its Stability and Rheological Properties. Polymers. 2023; 15(20):4157. https://doi.org/10.3390/polym15204157
Chicago/Turabian StyleGómez Hoyos, Catalina, Luis David Botero, Andrea Flórez-Caro, Jorge Andrés Velásquez-Cock, and Robin Zuluaga. 2023. "Nanocellulose from Cocoa Shell in Pickering Emulsions of Cocoa Butter in Water: Effect of Isolation and Concentration on Its Stability and Rheological Properties" Polymers 15, no. 20: 4157. https://doi.org/10.3390/polym15204157
APA StyleGómez Hoyos, C., Botero, L. D., Flórez-Caro, A., Velásquez-Cock, J. A., & Zuluaga, R. (2023). Nanocellulose from Cocoa Shell in Pickering Emulsions of Cocoa Butter in Water: Effect of Isolation and Concentration on Its Stability and Rheological Properties. Polymers, 15(20), 4157. https://doi.org/10.3390/polym15204157