Dental Resin-Based Luting Materials—Review
Abstract
:1. Introduction
2. Resin-Based Dental Luting Materials
2.1. Resin-Based Dental Luting Materials—Chemical Structure
2.1.1. Organic Matrix
2.1.2. Filler Particles
2.1.3. Silane
2.1.4. Other Components
3. Polymerization Degree of Resin Cements
- DC = polymerization efficiency or degree of monomer conversion (in %)
- R = ratio of the peak area at 1638 cm−1 and 1608 cm−1 in the polymerized and unpolymerized material.
4. Polymerization Mechanism of Resin-Based Dental Luting Materials
5. Polymerization Contraction of Resin-Based Dental Luting Materials
6. Characteristics of Resin-Based Dental Luting Materials
7. Curent Perspectives
8. Future Perspectives
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Backer, H.; Van Maele, G.; De Moor, N.; Berghe, L.V.D.; De Boever, J. A 20-year retrospective survival study of fixed partial dentures. Int. J. Prosthodont. 2006, 19, 143–153. [Google Scholar] [PubMed]
- Behr, M.; Rosentritt, M.; Wimmer, J.; Lang, R.; Kolbeck, C.; Bürgers, R.; Handel, G. Self-adhesive resin cement versus zinc phosphate luting material: A prospective clinical trial begun 2003. Dent. Mater. 2009, 25, 601–604. [Google Scholar] [CrossRef]
- Lad, P.P.; Kamath, M.; Tarale, K.; Kusugal, P.B. Practical clinical considerations of luting cements: A review. J. Int. Oral Heal. 2014, 6, 116–120. [Google Scholar]
- Masaka, N.; Yoneda, S.; Masaka, K. An up to 43-year longitudinal study of fixed prosthetic restorations retained with 4-META/MMA-TBB resin cement or zinc phosphate cement. J. Prosthet. Dent. 2021, 129, 83–88. [Google Scholar] [CrossRef]
- Lima, R.B.W.; Murillo-Gómez, F.; Sartori, C.G.; De Góes, M.F. Effect of light absence or attenuation on biaxial flexural strength of dual-polymerized resin cements after short- and long-term storage. J. Esthet. Restor. Dent. 2018, 31, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Hosney, S.; Abouelseoud, H.K.; El-Mowafy, O. Radiopacity of Resin Cements Using Digital Radiography. J. Esthet. Restor. Dent. 2017, 29, 215–221. [Google Scholar] [CrossRef]
- Acquaviva, P.A.; Cerutti, F.; Adami, G.; Gagliani, M.; Ferrari, M.; Gherlone, E.; Cerutti, A. Degree of conversion of three composite materials employed in the adhesive cementation of indirect restorations: A micro-Raman analysis. J. Dent. 2009, 37, 610–615. [Google Scholar] [CrossRef]
- Ibarra, G.; Johnson, G.H.; Geurtsen, W.; Vargas, M.A. Microleakage of porcelain veneer restorations bonded to enamel and dentin with a new self-adhesive resin-based dental cement. Dent. Mater. 2007, 23, 218–225. [Google Scholar] [CrossRef]
- Hitz, T.; Stawarczyk, B.; Fischer, J.; Hämmerle, C.H.; Sailer, I. Are self-adhesive resin cements a valid alternative to conventional resin cements? A laboratory study of the long-term bond strength. Dent. Mater. 2012, 28, 1183–1190. [Google Scholar] [CrossRef]
- Solon-De-Mello, M.; Fidalgo, T.K.d.S.; Letieri, A.d.S.; Masterson, D.; Granjeiro, J.M.; Alto, R.V.M.; Maia, L.C. Longevity of indirect restorations cemented with self-adhesive resin luting with and without selective enamel etching. A Systematic review and meta-analysis. J. Esthet. Restor. Dent. 2019, 31, 327–337. [Google Scholar] [CrossRef]
- Santi, M.R.; Lins, R.B.E.; Sahadi, B.O.; Denucci, G.C.; Soffner, G.; Martins, L.R.M. Influence of inorganic composition and filler particle morphology on the mechanical properties of self-adhesive resin cements. Restor. Dent. Endod. 2022, 47, e32. [Google Scholar] [CrossRef] [PubMed]
- AlSahafi, R.; Wang, X.; Mitwalli, H.; Alhussein, A.; Balhaddad, A.A.; Melo, M.A.S.; Oates, T.W.; Sun, J.; Xu, H.; Weir, M.D. Novel antibacterial low-shrinkage-stress resin-based cement. Dent. Mater. 2022, 38, 1689–1702. [Google Scholar] [CrossRef]
- Velo, M.M.; Nascimento, T.R.; Scotti, C.K.; Bombonatti, J.F.; Furuse, A.Y.; Silva, V.D.; Simões, T.A.; Medeiros, E.S.; Blaker, J.J.; Silikas, N.; et al. Improved mechanical performance of self-adhesive resin cement filled with hybrid nanofibers-embedded with niobium pentoxide. Dent. Mater. 2019, 35, e272–e285. [Google Scholar] [CrossRef]
- Hadjichristou, C.; Papachristou, E.; Vereroudakis, E.; Chatzinikolaidou, M.; About, I.; Koidis, P.; Bakopoulou, A. Biocompatibility assessment of resin-based cements on vascularized dentin/pulp tissue-engineered analogues. Dent. Mater. 2021, 37, 914–927. [Google Scholar] [CrossRef]
- Peumans, M.; Van Meerbeek, B.; Lambrechts, P.; Vanherle, G. Porcelain veneers: A review of the literature. J. Dent. 2000, 28, 163–177. [Google Scholar] [CrossRef]
- Fleming, G.J.; Cao, X.; Romanyk, D.L.; Addison, O. Favorable residual stress induction by resin-cementation on dental porcelain. Dent. Mater. 2017, 33, 1258–1265. [Google Scholar] [CrossRef] [PubMed]
- De Angelis, F.; D’Arcangelo, C.; Buonvivere, M.; Rondoni, G.D.; Vadini, M. Shear bond strength of glass ionomer and resin-based cements to different types of zirconia. J. Esthet. Restor. Dent. 2020, 32, 806–814. [Google Scholar] [CrossRef]
- Vargas, M.A.; Bergeron, C.; Diaz-Arnold, A. Cementing all-ceramic restorations: Recommendations for success. J. Am. Dent. Assoc. 2011, 142, 20S–24S. [Google Scholar] [CrossRef] [PubMed]
- Aung, S.S.M.P.; Takagaki, T.; Ko, A.K.; Halabi, S.; Sato, T.; Ikeda, M.; Nikaido, T.; Burrow, M.F.; Tagami, J. Adhesion durability of dual-cure resin cements and acid–base resistant zone formation on human dentin. Dent. Mater. 2019, 35, 945–952. [Google Scholar] [CrossRef]
- Tsuge, T. Radiopacity of conventional, resin-modified glass ionomer, and resin-based luting materials. J. Oral Sci. 2009, 51, 223–230. [Google Scholar] [CrossRef]
- Cramer, N.B.; Couch, C.L.; Schreck, K.M.; Carioscia, J.A.; Boulden, J.E.; Stansbury, J.W.; Bowman, C.N. Investigation of thiol-ene and thiol-ene–methacrylate based resins as dental restorative materials. Dent. Mater. 2010, 26, 21–28. [Google Scholar] [CrossRef]
- Maletin, A.; Ristic, I.; Veljovic, T.; Ramic, B.; Puskar, T.; Jeremic-Knezevic, M.; Koprivica, D.D.; Milekic, B.; Vukoje, K. Influence of Dimethacrylate Monomer on the Polymerization Efficacy of Resin-Based Dental Cements—FTIR Analysis. Polymers 2022, 14, 247. [Google Scholar] [CrossRef] [PubMed]
- Cramer, N.; Stansbury, J.; Bowman, C. Recent Advances and Developments in Composite Dental Restorative Materials. J. Dent. Res. 2010, 90, 402–416. [Google Scholar] [CrossRef] [PubMed]
- Leung, G.K.-H.; Wong, A.W.-Y.; Chu, C.-H.; Yu, O.Y. Update on Dental Luting Materials. Dent. J. 2022, 10, 208. [Google Scholar] [CrossRef]
- Amirouche-Korichi, A.; Mouzali, M.; Watts, D.C. Effects of monomer ratios and highly radiopaque fillers on degree of conversion and shrinkage-strain of dental resin composites. Dent. Mater. 2009, 25, 1411–1418. [Google Scholar] [CrossRef] [PubMed]
- Anusavice, K.J.; Shen, C.; Rawls, H.R. Phillips’ Science of Dental Materials, 11th ed.; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- BinMahfooz, A.M.; Qutub, O.A.; Marghalani, T.Y.; Ayad, M.F.; Maghrabi, A.A. Degree of conversion of resin cement with varying methacrylate compositions used to cement fiber dowels: A Raman spectroscopy study. J. Prosthet. Dent. 2018, 119, 1014–1020. [Google Scholar] [CrossRef]
- Ferrari, M.; Carvalho, C.; Goracci, C.; Antoniolli, F.; Mazzoni, A.; Mazzotti, G.; Cadenaro, M.; Breschi, L. Influence of Luting Material Filler Content on Post Cementation. J. Dent. Res. 2009, 88, 951–956. [Google Scholar] [CrossRef] [PubMed]
- Braga, S.S.L.; Price, R.B.; Juckes, S.M.; Sullivan, B.; Soares, C.J. Effect of the violet light from polywave light-polymerizing units on two resin cements that use different photoinitiators. J. Prosthet. Dent. 2022; in press. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, R.; Mese, A.; Burrow, M.F.; Tyas, M.J. Comparison of the effect of storage media on shear punch strength of resin luting cements. J. Dent. 2010, 38, 820–827. [Google Scholar] [CrossRef]
- Peutzfeldt, A. Dual-cure resin cements: In vitro wear and effect of quantity of remaining double bonds, filler volume, and light curing. Acta Odontol. Scand. 1995, 53, 29–34. [Google Scholar] [CrossRef]
- Furtos, G.; Baldea, B.; Silaghi-Dumitrescu, L.; Moldovan, M.; Prejmerean, C.; Nica, L. Influence of inorganic filler content on the radiopacity of dental resin cements. Dent. Mater. J. 2012, 31, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Sümer, E.; Değer, Y. Contemporary Permanent Luting Agents Used in Dentistry: A Literature Review. Int. Dent. Res. 2011, 1, 26–31. [Google Scholar] [CrossRef]
- Hooshmand, T.; Vannoort, R.; Keshvad, A. Storage effect of a pre-activated silane on the resin to ceramic bond. Dent. Mater. 2004, 20, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.-H.; Rawls, H.R. Degree of conversion and color stability of the light curing resin with new photoinitiator systems. Dent. Mater. 2009, 25, 1030–1038. [Google Scholar] [CrossRef]
- Wilson, K.S.; Zhang, K.; Antonucci, J.M. Systematic variation of interfacial phase reactivity in dental nanocomposites. Biomaterials 2005, 26, 5095–5103. [Google Scholar] [CrossRef]
- Aguiar, T.R.; Di Francescantonio, M.; Bedran-Russo, A.K.; Giannini, M. Inorganic composition and filler particles morphology of conventional and self-adhesive resin cements by SEM/EDX. Microsc. Res. Tech. 2012, 75, 1348–1352. [Google Scholar] [CrossRef]
- Arrais, C.A.; Rueggeberg, F.A.; Waller, J.L.; de Goes, M.F.; Giannini, M. Effect of curing mode on the polymerization characteristics of dual-cured resin cement systems. J. Dent. 2008, 36, 418–426. [Google Scholar] [CrossRef]
- Garcia, R.N.; Reis, A.F.; Giannini, M. Effect of activation mode of dual-cured resin cements and low-viscosity composite liners on bond strength to dentin. J. Dent. 2007, 35, 564–569. [Google Scholar] [CrossRef]
- Knežević, A.; Tarle, Z.; Ristić, M.; Alajberg, I. Utjecaj intenziteta svjetla za polimerizaciju na stupanj konverzije kompozitnih materijala (I dio). Acta Stomatol. Croat. 2005, 39, 427–434. [Google Scholar]
- Arrais, C.A.; Giannini, M.; Rueggeberg, F.A. Effect of sodium sulfinate salts on the polymerization characteristics of dual-cured resin cement systems exposed to attenuated light-activation. J. Dent. 2009, 37, 219–227. [Google Scholar] [CrossRef]
- Miletic, V.; Santini, A.; Trkulja, I. Quantification of monomer elution and carbon–carbon double bonds in dental adhesive systems using HPLC and micro-Raman spectroscopy. J. Dent. 2009, 37, 177–184. [Google Scholar] [CrossRef]
- Miletic, V.J.; Santini, A. Remaining unreacted methacrylate groups in resin-based composite with respect to sample preparation and storing conditions using micro-Raman spectroscopy. J. Biomed. Mater. Res. Part B Appl. Biomater. 2008, 87B, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Santerre, J.; Shajii, L.; Leung, B. Relation of Dental Composite Formulations To Their Degradation and the Release of Hydrolyzed Polymeric-Resin-Derived Products. Crit. Rev. Oral Biol. Med. 2001, 12, 136–151. [Google Scholar] [CrossRef] [PubMed]
- Miletic, V.; Santini, A. Micro-Raman spectroscopic analysis of the degree of conversion of composite resins containing different initiators cured by polywave or monowave LED units. J. Dent. 2011, 40, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Passos, S.P.; Kimpara, E.T.; Bottino, M.A.; Santos, G.C.; Rizkalla, A.S. Effect of ceramic shade on the degree of conversion of a dual-cure resin cement analyzed by FTIR. Dent. Mater. 2013, 29, 317–323. [Google Scholar] [CrossRef]
- Ho, Y.-C.; Lai, Y.-L.; Chou, I.-C.; Yang, S.-F.; Lee, S.-Y. Effects of light attenuation by fibre posts on polymerization of a dual-cured resin cement and microleakage of post-restored teeth. J. Dent. 2011, 39, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, C.d.S.; Silva-Sousa, Y.C.; de Sousa-Neto, M.D. Effects of light exposure time on composite resin hardness after root reinforcement using translucent fibre post. J. Dent. 2008, 36, 520–528. [Google Scholar] [CrossRef]
- Baroudi, K.; Saleh, A.M.; Silikas, N.; Watts, D.C. Shrinkage behaviour of flowable resin-composites related to conversion and filler-fraction. J. Dent. 2007, 35, 651–655. [Google Scholar] [CrossRef]
- Feilzer, A.; Dauvillier, B. Effect of TEGDMA/BisGMA Ratio on Stress Development and Viscoelastic Properties of Experimental Two-paste Composites. J. Dent. Res. 2003, 82, 824–828. [Google Scholar] [CrossRef]
- Palin, W.M.; Fleming, G.J.; Burke, F.T.; Marquis, P.M.; Randall, R.C. Monomer conversion versus flexure strength of a novel dental composite. J. Dent. 2003, 31, 341–351. [Google Scholar] [CrossRef]
- Feng, L.; Carvalho, R.; Suh, B.I. Insufficient cure under the condition of high irradiance and short irradiation time. Dent. Mater. 2009, 25, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Neves, A.D.; Discacciati, J.A.C.; Oréfice, R.L.; Yoshida, M.I. Influence of the power density on the kinetics of photopolymerization and properties of dental composites. J. Biomed. Mater. Res. Part B Appl. Biomater. 2004, 72B, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Garrido, A.; Helguera, A.M.; Rodríguez, F.G.; Cordeiro, M.D. QSAR models to predict mutagenicity of acrylates, methacrylates and α,β-unsaturated carbonyl compounds. Dent. Mater. 2010, 26, 397–415. [Google Scholar] [CrossRef]
- Manojlovic, D.; Radisic, M.; Vasiljevic, T.; Zivkovic, S.; Lausevic, M.; Miletic, V. Monomer elution from nanohybrid and ormocer-based composites cured with different light sources. Dent. Mater. 2011, 27, 371–378. [Google Scholar] [CrossRef]
- Navarra, C.O.; Cadenaro, M.; Armstrong, S.R.; Jessop, J.; Antoniolli, F.; Sergo, V.; Di Lenarda, R.; Breschi, L. Degree of conversion of Filtek Silorane Adhesive System and Clearfil SE Bond within the hybrid and adhesive layer: An in situ Raman analysis. Dent. Mater. 2009, 25, 1178–1185. [Google Scholar] [CrossRef]
- Santini, A.; Miletic, V. Quantitative micro-Raman assessment of dentine demineralization, adhesive penetration, and degree of conversion of three dentine bonding systems. Eur. J. Oral Sci. 2008, 116, 177–183. [Google Scholar] [CrossRef]
- Imazato, S.; McCabe, J.; Tarumi, H.; Ehara, A.; Ebisu, S. Degree of conversion of composites measured by DTA and FTIR. Dent. Mater. 2001, 17, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Jongsma, L.A.; de Jager, N.; Kleverlaan, C.J.; Pallav, P.; Feilzer, A.J. Shear bond strength of three dual-cured resin cements to dentin analyzed by finite element analysis. Dent. Mater. 2012, 28, 1080–1088. [Google Scholar] [CrossRef]
- Moraes, R.R.; Garcia, J.W.; Barros, M.D.; Lewis, S.H.; Pfeifer, C.S.; Liu, J.; Stansbury, J.W. Control of polymerization shrinkage and stress in nanogel-modified monomer and composite materials. Dent. Mater. 2011, 27, 509–519. [Google Scholar] [CrossRef]
- Sakaguchi, R.L.; Powers, J.M. Craig′s Restorative Dental Materials, 13th ed.; Elsevier: Amsterdam, The Netherlands; Mosby: St. Louis, MO, USA, 2012. [Google Scholar]
- Shah, P.K.; Stansbury, J.W. Photopolymerization shrinkage-stress reduction in polymer-based dental restoratives by surface modification of fillers. Dent. Mater. 2021, 37, 578–587. [Google Scholar] [CrossRef]
- Marghalani, H.Y. Sorption and solubility characteristics of self-adhesive resin cements. Dent. Mater. 2012, 28, e187–e198. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.-J.; Chae, K.-H.; Rawls, H. Development of a new photoinitiation system for dental light-cure composite resins. Dent. Mater. 1999, 15, 120–127. [Google Scholar] [CrossRef]
- Belli, R.; Pelka, M.; Petschelt, A.; Lohbauer, U. In vitro wear gap formation of self-adhesive resin cements: A CLSM evaluation. J. Dent. 2009, 37, 984–993. [Google Scholar] [CrossRef] [PubMed]
- Cantoro, A.; Goracci, C.; Vichi, A.; Mazzoni, A.; Fadda, G.M.; Ferrari, M. Retentive strength and sealing ability of new self-adhesive resin cements in fiber post luting. Dent. Mater. 2011, 27, e197–e204. [Google Scholar] [CrossRef]
- Pereira, S.G.; Fulgêncio, R.; Nunes, T.G.; Toledano, M.; Osorio, R.; Carvalho, R.M. Effect of curing protocol on the polymerization of dual-cured resin cements. Dent. Mater. 2010, 26, 710–718. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Magdaleno, M.; Bogarin-Topete, E.R.; Cerda-Cristerna, B.I.; Gutiérrez-Sánchez, M. Effect of degree of conversion on the surface properties of polymerized resin cements used for luting glass fiber posts. J. Prosthet. Dent. 2023, 130, 256.e1–256.e12. [Google Scholar] [CrossRef]
- Chung, C.; Yiu, C.; King, N.; Hiraishi, N.; Tay, F. Effect of saliva contamination on bond strength of resin luting cements to dentin. J. Dent. 2009, 37, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Zicari, F.; De Munck, J.; Scotti, R.; Naert, I.; Van Meerbeek, B. Factors affecting the cement–post interface. Dent. Mater. 2012, 28, 287–297. [Google Scholar] [CrossRef]
- Berzins, D.; Abey, S.; Costache, M.; Wilkie, C.; Roberts, H. Resin-modified Glass-ionomer Setting Reaction Competition. J. Dent. Res. 2009, 89, 82–86. [Google Scholar] [CrossRef]
- Sideridou, I.D.; Karabela, M.M. Sorption of water, ethanol or ethanol/water solutions by light-cured dental dimethacrylate resins. Dent. Mater. 2011, 27, 1003–1010. [Google Scholar] [CrossRef]
- Pedreira, A.P.R.; Pegoraro, L.F.; de Góes, M.F.; Pegoraro, T.A.; Carvalho, R.M. Microhardness of resin cements in the intraradicular environment: Effects of water storage and softening treament. Dent. Mater. 2009, 25, 868–876. [Google Scholar] [CrossRef] [PubMed]
- Vrochari, A.D.; Eliades, G.; Hellwig, E.; Wrbas, K.-T. Curing efficiency of four self-etching, self-adhesive resin cements. Dent. Mater. 2009, 25, 1104–1108. [Google Scholar] [CrossRef] [PubMed]
- Frassetto, A.; Navarra, C.; Marchesi, G.; Turco, G.; Di Lenarda, R.; Breschi, L.; Ferracane, J.; Cadenaro, M. Kinetics of polymerization and contraction stress development in self-adhesive resin cements. Dent. Mater. 2012, 28, 1032–1039. [Google Scholar] [CrossRef]
- Alex, G. Universal Adhesives: The Next Evolution in Adhesive Dentistry? Compendium 2015, 36, 15–26. [Google Scholar]
- Mitra, S. Adhesion to Dentin and Physical Properties of a Light-cured Glass-ionomer Liner/Base. J. Dent. Res. 1991, 70, 72–74. [Google Scholar] [CrossRef]
- Coelho Santos, M.J.; Navarro, M.F.; Tam, L.; McComb, D. The effect of dentin adhesive and cure mode on film thickness and microtensile bond strength to dentin in indirect restorations. Oper. Dent. 2005, 30, 50–57. [Google Scholar]
- Hsu, S.-H.; Chen, R.-S.; Chang, Y.-L.; Chen, M.-H.; Cheng, K.-C.; Su, W.-F. Biphenyl liquid crystalline epoxy resin as a low-shrinkage resin-based dental restorative nanocomposite. Acta Biomater. 2012, 8, 4151–4161. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Carioscia, J.A.; Stansbury, J.W.; Bowman, C.N. Investigations of step-growth thiol-ene polymerizations for novel dental restoratives. Dent. Mater. 2005, 21, 1129–1136. [Google Scholar] [CrossRef]
- Wang, X.; Huyang, G.; Palagummi, S.V.; Liu, X.; Skrtic, D.; Beauchamp, C.; Bowen, R.; Sun, J. High performance dental resin composites with hydrolytically stable monomers. Dent. Mater. 2018, 34, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Petrovic, L.M.; Drobac, M.R.; Stojanac, I.L.; Atanackovic, T.M. A method of improving marginal adaptation by elimination of singular stress point in composite restorations during resin photo-polymerization. Dent. Mater. 2010, 26, 449–455. [Google Scholar] [CrossRef]
- Souza, S.F.C.; Bombana, A.C.; Francci, C.; Gonçalves, F.; Castellan, C.; Braga, R.R. Polymerization stress, flow and dentine bond strength of two resin-based root canal sealers. Int. Endod. J. 2009, 42, 867–873. [Google Scholar] [CrossRef] [PubMed]
- Cunha, L.G.; Alonso, R.C.B.; Pfeifer, C.S.C.; Correr-Sobrinho, L.; Ferracane, J.L.; Sinhoreti, M.A.C. Modulated photoactivation methods: Influence on contraction stress, degree of conversion and push-out bond strength of composite restoratives. J. Dent. 2007, 35, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Navarra, C.O.; Breschi, L.; Turco, G.; Diolosà, M.; Fontanive, L.; Manzoli, L.; Di Lenarda, R.; Cadenaro, M. Degree of conversion of two-step etch-and-rinse adhesives: In situ micro-Raman analysis. J. Dent. 2012, 40, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Blažić, L.; Živković, S. “Uiticaj soft start” polimerizacije na kvalitet rubnog zatvaranja kompozitnih ispuna. Srp. Arh. Za Celok. Lek. 2003, 50, 59–64. [Google Scholar] [CrossRef]
- Leprince, J.; Lamblin, G.; Devaux, J.; Dewaele, M.; Mestdagh, M.; Palin, W.; Gallez, B.; Leloup, G. Irradiation Modes’ Impact on Radical Entrapment in Photoactive Resins. J. Dent. Res. 2010, 89, 1494–1498. [Google Scholar] [CrossRef]
- Dewaele, M.; Asmussen, E.; Peutzfeldt, A.; Munksgaard, E.C.; Benetti, A.R.; Finné, G.; Leloup, G.; Devaux, J. Influence of curing protocol on selected properties of light-curing polymers: Degree of conversion, volume contraction, elastic modulus, and glass transition temperature. Dent. Mater. 2009, 25, 1576–1584. [Google Scholar] [CrossRef]
- Melo, R.M.; Özcan, M.; Barbosa, S.H.; Galhano, G.; Amaral, R.; Bottino, M.A.; Valandro, L.F. Bond Strength of Two Resin Cements on Dentin Using Different Cementation Strategies. J. Esthet. Restor. Dent. 2010, 22, 262–268. [Google Scholar] [CrossRef]
- Reda, R.; Zanza, A.; Bellanova, V.; Patil, S.; Bhandi, S.; Di Nardo, D.; Testarelli, L. Zinc Oxide Non-Eugenol Cement versus Resinous Cement on Single Implant Restoration: A Split-Mouth Study. J. Compos. Sci. 2023, 7, 128. [Google Scholar] [CrossRef]
- Moharamzadeh, K.; Van Noort, R.; Brook, I.M.; Scutt, A.M. Cytotoxicity of resin monomers on human gingival fibroblasts and HaCaT keratinocytes. Dent. Mater. 2007, 23, 40–44. [Google Scholar] [CrossRef]
- Costa, C.A.d.S.; Hebling, J.; Randall, R.C. Human pulp response to resin cements used to bond inlay restorations. Dent. Mater. 2006, 22, 954–962. [Google Scholar] [CrossRef]
- Goenka, S. In Vitro Evaluation of Dental Resin Monomers, Triethylene Glycol Dimethacrylate (TEGDMA), and 2-Hydroxyethyl Methacrylate (HEMA) in Primary Human Melanocytes: A Pilot Study. Oral 2023, 3, 353–371. [Google Scholar] [CrossRef]
- Lee, D.H.; Lim, B.-S.; Lee, Y.-K.; Ahn, S.-J.; Yang, H.-C. Involvement of oxidative stress in mutagenicity and apoptosis caused by dental resin monomers in cell cultures. Dent. Mater. 2006, 22, 1086–1092. [Google Scholar] [CrossRef] [PubMed]
- Becher, R.; Kopperud, H.; AL, R.; Samuelsen, J.; Morisbak, E.; Dahlman, H.; Lilleaas, E.; Dahl, J. Pattern of cell death after in vitro exposure to GDMA, TEGDMA, HEMA and two compomer extracts. Dent. Mater. 2006, 22, 630–640. [Google Scholar] [CrossRef]
- Sim, J.-S.; Seol, H.-J.; Park, J.-K.; Garcia-Godoy, F.; Kim, H.-I.; Kwon, Y.H. Interaction of LED light with coinitiator-containing composite resins: Effect of dual peaks. J. Dent. 2012, 40, 836–842. [Google Scholar] [CrossRef] [PubMed]
- Aldhafyan, M.; Silikas, N.; Watts, D.C. Influence of curing modes on monomer elution, sorption and solubility of dual-cure resin-cements. Dent. Mater. 2022, 38, 978–988. [Google Scholar] [CrossRef] [PubMed]
- Dewaele, M.; Truffier-Boutry, D.; Devaux, J.; Leloup, G. Volume contraction in photocured dental resins: The shrinkage-conversion relationship revisited. Dent. Mater. 2006, 22, 359–365. [Google Scholar] [CrossRef]
- AlAali, K.A.; AlHelal, A.; Almahri, J.R.; Albakri, A.A.; Albani, R.M.; Alhaizan, Y.A.; Alhamdan, M.M.; Alaql, N.A.; Binhasan, M.; Alhamdan, E.M.; et al. Influence of Conventional Polymer, Hybrid Polymer and Zinc Phosphate Luting Agents on the Bond Strength of Customized Zirconia Post in Premolars—An In-Vitro Evaluation. Polymers 2022, 14, 758. [Google Scholar] [CrossRef]
- Diemer, F.; Stark, H.; Helfgen, E.-H.; Enkling, N.; Probstmeier, R.; Winter, J.; Kraus, D. In vitro cytotoxicity of different dental resin-cements on human cell lines. J. Mater. Sci. Mater. Med. 2021, 32, 4. [Google Scholar] [CrossRef]
- Babaier, R.; Haider, J.; Silikas, N.; Watts, D.C. Effect of CAD/CAM aesthetic material thickness and translucency on the polymerisation of light- and dual-cured resin cements. Dent. Mater. 2022, 38, 2073–2083. [Google Scholar] [CrossRef] [PubMed]
- Cuzic, C.; Jivanescu, A.; Negru, R.M.; Hulka, I.; Rominu, M. The Influence of Hydrofluoric Acid Temperature and Application Technique on Ceramic Surface Texture and Shear Bond Strength of an Adhesive Cement. Materials 2023, 16, 4303. [Google Scholar] [CrossRef]
- Della Bona, A.; Anusavice, K.J.; Shen, C. Microtensile strength of composite bonded to hot-pressed ceramics. J. Adhes. Dent. 2000, 2, 305–313. [Google Scholar]
- Ozcan, M.; Akumuru, H.N.; Gemalmaz, D. The effect of surface treatment on shear bond strength of luting cement to glass-infiltated alumina ceramic. Int. J. Prosthodont. 2001, 14, 335–339. [Google Scholar] [PubMed]
- Yao, C.; Yang, H.; Yu, J.; Zhang, L.; Zhu, Y.; Huang, C. High Bond Durability of Universal Adhesives on Glass Ceramics Facilitated by Silane Pretreatment. Oper. Dent. 2018, 43, 602–612. [Google Scholar] [CrossRef] [PubMed]
- Lima, R.B.W.; Muniz, I.d.A.F.; Campos, D.e.S.; Murillo-Gómez, F.; de Andrade, A.K.M.; Duarte, R.M.; de Souza, G.M. Effect of universal adhesives and self-etch ceramic primers on bond strength to glass ceramics: A systematic review and meta-analysis of in vitro studies. J. Prosthet. Dent. 2022; in press. [Google Scholar] [CrossRef]
- Nogueira, I.d.O.; de Oliveira, P.F.G.; Magno, M.B.; Ferreira, D.M.T.P.; Maia, L.C.; Rabello, T.B. Does the application of an adhesive layer improve the bond strength of etched and silanized glass-ceramics to resin-based materials? A systematic review and meta-analysis. J. Prosthet. Dent. 2020, 125, 56–64. [Google Scholar] [CrossRef]
- Yan, K.; Song, J.; Liu, X.; Zhang, Y.; Qiu, Y.; Jiao, J.; Wu, M. Effect of Er:YAG laser pretreatment on glass–ceramic surface in vitro. Lasers Med Sci. 2022, 37, 3177–3182. [Google Scholar] [CrossRef]
- Valente, F.; Mavriqi, L.; Traini, T. Effects of 10-MDP Based Primer on Shear Bond Strength between Zirconia and New Experimental Resin Cement. Materials 2020, 13, 235. [Google Scholar] [CrossRef]
- Kim, J.-H.; Chae, S.-Y.; Lee, Y.; Han, G.-J.; Cho, B.-H. Effects of Multipurpose, Universal Adhesives on Resin Bonding to Zirconia Ceramic. Oper. Dent. 2015, 40, 55–62. [Google Scholar] [CrossRef]
- Lümkemann, N.; Eichberger, M.; Stawarczyk, B. Different surface modifications combined with universal adhesives: The impact on the bonding properties of zirconia to composite resin cement. Clin. Oral Investig. 2019, 23, 3941–3950. [Google Scholar] [CrossRef] [PubMed]
- Calheiros-Lobo, M.J.; Vieira, T.; Carbas, R.; da Silva, L.F.M.; Pinho, T. Effectiveness of Self-Adhesive Resin Luting Cement in CAD-CAM Blocks—A Systematic Review and Meta-Analysis. Materials 2023, 16, 2996. [Google Scholar] [CrossRef]
- Bandarra, S.; Neves, J.; Paraíso, A.; Mascarenhas, P.; Ribeiro, A.C.; Barahona, I. Biocompatibility of self-adhesive resin cement with fibroblast cells. J. Prosthet. Dent. 2021, 125, 705.e1–705.e7. [Google Scholar] [CrossRef] [PubMed]
- Alrahlah, A. Diametral Tensile Strength, Flexural Strength, and Surface Microhardness of Bioactive Bulk Fill Restorative. J. Contemp. Dent. Pract. 2018, 19, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Lardani, L.; Derchi, G.; Marchio, V.; Carli, E. One-Year Clinical Performance of Activa™ Bioactive-Restorative Composite in Primary Molars. Children 2022, 9, 433. [Google Scholar] [CrossRef] [PubMed]
Dental Luting Materials | Compressive Strength (MPa) | Flexural Strength (MPa) | Modulus of Elasticity (GPa) | Water Solubility (wt%) |
---|---|---|---|---|
Zinc-phosphate cement | 104 | 5.5 | 13.5 | 0.06 |
Polycarboxylate cement | 55 | 6.2 | 5.1 | 0.06 |
Glass-ionomer cement | 86 | 6.2 | 7.3 | 1.25 |
Composite resin-based cement | 70–172 | 42 | 2.1–3.1 | 0–0.01 |
Resin-Based Luting Material | Manufacturer | Polymerization Mechanism | Composition |
---|---|---|---|
VARIOLINK II | IvoclarVivadent AG, Schaan, Liechenstein | Dual-polymerizing cement Requires Excite DSC utilization | BisGMA, UDMA, TEGDMA |
Barium glass | |||
Ytterbiumtrifluoride | |||
Ba-Al fluorosilicate glass | |||
Dibenzoyl peroxide | |||
MAXCEM ELITE | Kerr Scafati, Italia | Chemically polymerizing cement “Self-adhesive”cement | HEMA |
4 Methoxyphenol | |||
Cumene HydroPerOxide | |||
Titanium Dioxide | |||
Mineral fillers | |||
Ytterbium fluoride | |||
SPEEDCEM | IvoclarVivadent AG, Schaan, Liechenstein | Chemically polymerizing cement “Self-adhesive”cement | UDMA, TEGDMA |
Barium glass | |||
Ytterbiumtrifluoride | |||
Dibenzoyl peroxide | |||
RELYX ARC | 3M ESPE, Landsberg am Lech, Germany | Dual-polymerizing cement Requires Single Bond Adper utilization | TEGDMA |
BISGMA | |||
SILANE TREATED SILICA | |||
REACTED POLYCAPROLACTONE POLYMER 2-BENZOTRIAZOLYL-4-METHYLPHENOL BENZOYL PEROXIDE | |||
RELYX VENEER | 3M ESPE, Landsberg am Lech, Germany | Light-polymerizing cement Requires Single Bond Adper utilization | BISGMA |
TEGDMA | |||
Titanium Dioxide | |||
Diphenyliodonium | |||
Hexafluorophosphate N,N-DIMETHYLBENZOCAINE |
RelyX U100 3M ESPE | Base: glass fiber, multifunctional methacrylate phosphoric acid monomers, dimethacrylates, silanated silica, sodium persulfate. |
Catalyst: glass fiber, dimethacrylates, silanated silica, p-toluene sodium sulfate, calcium hydroxide | |
Maxcem Elite Kerr Corporation | Resin matrix: GPDM, co-monomers (mono-, di-, and tri-functional methacrylate monomers), proprietary self-curing redox activator, photoinitiator CQ, stabilizer |
Filler load 67%wt: fluoroaluminiosilicate glass, fumed silica, barium glass, ytterbium fluoride |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maletin, A.; Knežević, M.J.; Koprivica, D.Đ.; Veljović, T.; Puškar, T.; Milekić, B.; Ristić, I. Dental Resin-Based Luting Materials—Review. Polymers 2023, 15, 4156. https://doi.org/10.3390/polym15204156
Maletin A, Knežević MJ, Koprivica DĐ, Veljović T, Puškar T, Milekić B, Ristić I. Dental Resin-Based Luting Materials—Review. Polymers. 2023; 15(20):4156. https://doi.org/10.3390/polym15204156
Chicago/Turabian StyleMaletin, Aleksandra, Milica Jeremić Knežević, Daniela Đurović Koprivica, Tanja Veljović, Tatjana Puškar, Bojana Milekić, and Ivan Ristić. 2023. "Dental Resin-Based Luting Materials—Review" Polymers 15, no. 20: 4156. https://doi.org/10.3390/polym15204156
APA StyleMaletin, A., Knežević, M. J., Koprivica, D. Đ., Veljović, T., Puškar, T., Milekić, B., & Ristić, I. (2023). Dental Resin-Based Luting Materials—Review. Polymers, 15(20), 4156. https://doi.org/10.3390/polym15204156