Chromophores’ Contribution to Color Changes of Thermally Modified Tropical Wood Species
Abstract
:1. Introduction
Goals
- Determination of the influence of the thermal modification temperature on individual parameters (L*, a*, and b*) of the CIELAB color space, including total color difference (ΔE*) and on UV-Vis diffuse reflectance parameters, i.e., k/s intensity, yellowness (Y), and ISO brightness, of selected wood species.
- Determination of the effect of the thermal modification temperature on individual parameters (L*, a*, and b*) of the CIELAB color space and yellowness index (Yi) of extractives isolated from these woods into acetone, ethanol, and ethanol-toluene and their mass yields (wt.%).
- Quantitative and qualitative evaluation of extracted chromophoric compounds in the above-mentioned individual solvents using UV-Vis spectroscopy.
- Statistical evaluation of the measured data of solid samples and extractives.
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.2.1. Thermal Modification
- Rapid heating to a temperature of 100 °C followed by gradual heating to a temperature of 130–140 °C for about 3–4 h (heating step 8–10 °C per hour) depending on the type of wood, its thickness, and moisture content. During this phase, the wood was dried to a nearly 0% moisture content.
- After reaching the required temperature (180, 200, and 220 °C), the thermal modification itself takes place for 3 h. Sensors control the constant temperature level of the samples’ cross-section. During heat treatment, water vapor was introduced to the chamber, which served as a protective medium against ignition and favorably influenced the ongoing chemical reactions.
- The final stage is a cooling and regeneration process (moistening) lasting 5–15 h. By gradually watering the wood and dropping the temperature to 80–90 °C, the samples return to the desired moisture level of approximately 5–7%. The chamber was opened at a temperature of 40 °C to avoid thermal shock in the modified wood.
2.2.2. Preparation of Wood Samples for Analyses
2.3. Methods
2.3.1. Measurement of Color Parameters Including UV-Vis Diffuse Reflectance Spectra of Solid Wood Samples
2.3.2. Extraction
2.3.3. UV-Vis Spectrophotometry Measurement of Extractives in Solvents
2.3.4. Statistical Evaluation
3. Results and Discussion
3.1. Measurement of Color Parameters of Solid Wood Samples Using UV-Vis Diffuse Reflectance
3.2. Measurement of UV-Vis DR Spectra and Quantitative Evaluation of Chromophoric Groups in Solid Wood Samples
3.3. Determination of the Extractive Content in Wood
3.4. In Vitro Color Measurement of Extractive Compounds Using UV-Vis Spectrophotometry
3.4.1. The Evaluation of the Measured Spectra in the Region below 500 nm
3.4.2. The Evaluation of the Measured Spectra in the Region above 500 nm
3.5. Extractive Substances Determined in Tropical Wood Species by Other Authors
3.6. Statistical Evaluation
3.6.1. Principal Component Analysis (PCA)
3.6.2. Functional Dependence of Yellowness
4. Summary and Conclusions
- The values of the L*, a*, and b* parameters are in all cases positive, and with increasing temperature of thermal modification, they have a decreasing trend—the samples lose brightness and darken. The exception is merbau wood, where these values increased between 200 and 220 °C.
- Based on the cluster analysis in the CIELAB color space, the samples can be divided into six clusters according to similarity. A special group is made up of padauk samples PA20 and PA180, distinguished by their significant redness (a* ≈ 26.5–29.0).
- As the thermal modification temperature increases, ΔE* increases for most samples except for merbau with the highest ΔE* value for sample MB200 (for MB220 this value decreases by almost 20%). At a thermal modification temperature of 200 °C, all samples (except IR200) have similar ΔE* values and at 220 °C, Spanish cedar, iroko, padouk, and meranti.
- In the case of the reference samples (except for SC and MB), the largest amount of extractives was obtained during extraction into acetone, into which mainly fatty and resinous acids and sterols are released.
- In the case of samples modified at higher temperatures, the highest yield of extractives (mainly phenolic compounds, glycosides, and dyes) was usually obtained using ethanol. Their representation in wood was mostly highest at a thermal modification temperature of 180 °C and decreased at 200 and 220 °C.
- The increasing amount of chromophores with the thermal modification temperature is observed for Spanish cedar and meranti.
- The k/s intensity decreases along with increasing wavelength for all woods (except padouk).
- Padouk, merbau, and teak, and partially also iroko, modified at temperatures of 200 and 220 °C contain a comparable amount of chromophoric compounds detected at wavelengths of 360 nm and 457 nm.
- The discoloration of wood during thermal modification is due mainly to condensation and oxidation reactions. Both of these lead to the formation of extensive conjugation structures (alkenes and aromatics) while increasing the number of carbonyl or carboxyl groups.
- New types of extractive substances formed from hemicelluloses (2-furaldehyde, etc.), cellulose (lactones, etc.), and lignin (formic acid, methanol, monomer derivatives of phenols, etc.) are created already below a temperature of 180 °C when they are not subject to even more condensation reactions.
- Five clusters based on the similarity of the included parameters (L*, a*, and b* of solid samples and extractives, yellowness of wood, yellowness indices of individual extractives, and intensity k/s at selected wavelengths and amount of extractives) were obtained by applying cluster analysis to the three main components.
- Clusters 1, 2, 4, and 5 comprise only the reference and thermally modified samples at 180 °C (except SC200 and MB200), whereas cluster 1 comprises only SC20. Cluster 3 consists of 12 samples, mostly thermally modified at 200 °C and 220 °C, plus TE20 and TE180 samples.
- The yellowness (Y) of the wood has a very high dependence (r = 0.972) on the brightness (L*) of these samples.
- The coefficient of determination (r2 = 0.973) indicates a very high degree of explanation of the variable yellowness (Y) using the parameter L*, and also b*.
- A certain dependence (r = 0.714) is also noted between the yellowness (Y) and the yellowness index of extractives soluble in acetone Yi(Ac), whose relationship is described by the equation Y = −0.0951 × Y(Ac) + 23.3485.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hon, D.N.S.; Minemura, N. Color and discoloration. In Wood and Cellulosic Chemistry; Hon, D.N.S., Shiraishi, N., Eds.; Marcel Dekker: New York, NY, USA, 2001; pp. 385–442. [Google Scholar]
- Reinprecht, L.; Mamoňová, M.; Pánek, M.; Kačík, F. The impact of natural and artificial weathering on the visual, color, and structural changes of seven tropical woods. Eur. J. Wood Wood Prod. 2018, 76, 175–190. [Google Scholar] [CrossRef]
- Panshin, A.J.; de Zeeuw, C. Textbook of Wood Technology; McGraw-Hill Book Company: New York, NY, USA, 1980; p. 722. [Google Scholar]
- Rosenau, T.; Potthast, A.; Kosma, P.; Suess, H.U.; Nimmerfroh, N. Chromophores in aged hardwood pulp—Their structure and degradation potential. Tappi J. 2008, 1, 24–30. [Google Scholar]
- Tribulová, T.; Kačík, F.; Evtuguin, D.V.; Čabalová, I. Assessment of Chromophores in Chemically Treated and Aged Wood by UV-Vis Diffuse Reflectance Spectroscopy. Cellul. Chem. Technol. 2016, 50, 659–667. [Google Scholar]
- Bourgois, J.; Bartholin, M.C.; Guyonnet, R. Thermal treatment of wood: Analysis of the obtained product. Wood Sci. Technol. 1989, 23, 303–310. [Google Scholar] [CrossRef]
- Hill, C.; Altgen, M.; Rautkari, L. Thermal modification of wood—A review: Chemical changes and hygroscopicity. J. Mater. Sci. 2021, 56, 6581–6614. [Google Scholar] [CrossRef]
- Reinprecht, L.; Vidholdová, Z. ThermoWood–Preparing, Properties and Applications; Technical University in Zvolen: Zvolen, Slovakia, 2008; p. 89. (In Slovak) [Google Scholar]
- Tjeerdsma, B.F.; Boonstra, M.; Pizzi, A.; Tekely, P.; Militz, H. Characterisation of thermally modified wood: Molecular reasons for wood performance improvement. Holz Als Roh-Und Werkst. 1998, 56, 149–153. [Google Scholar] [CrossRef]
- Chen, Y.; Fan, Y.; Gao, J.; Stark, N.M. The effect of heat treatment on the chemical and color change of black locust (Robinia pseudoacacia) wood flour. BioResources 2012, 7, 1157–1170. [Google Scholar] [CrossRef]
- Chen, Y.; Gao, J.; Fan, Y.; Tshabalala, M.A.; Stark, N.M. Heat-induced chemical and color changes of extractive-free black locust (Robinia pseudoacacia) wood. BioResources 2012, 7, 2236–2248. [Google Scholar] [CrossRef]
- Huang, X.; Kocaefe, D.; Kocaefe, Y.; Boluk, Y.; Pichette, A. A spectrocolorimetric and chemical study on color modification of heat-treated wood during artificial weathering. Appl. Surf. Sci. 2012, 258, 5360–5369. [Google Scholar] [CrossRef]
- Taraborelli, C.; Monteoliva, S.; Keil, G.; Spavento, E. Effect of heat treatment on hardness, density and color of Populus× canadensis ‘I-214′wood. For. Syst. 2022, 31, e023. [Google Scholar] [CrossRef]
- Bakar, B.F.A.; Hiziroglu, S.; Tahir, P.M. Properties of some thermally modified wood species. Mater. Des. 2013, 43, 348–355. [Google Scholar] [CrossRef]
- Zaman, A.; Alén, R.; Kotilainen, R. Thermal behavior of Scots pine (Pinus sylvestris) and silver birch (Betula pendula) at 200–230. Wood Fiber Sci. 2000, 32, 138–143. [Google Scholar]
- Yildiz, S.; Gezer, E.D.; Yildiz, U.C. Mechanical and chemical behavior of spruce wood modified by heat. Build. Environ. 2006, 41, 1762–1766. [Google Scholar] [CrossRef]
- Majano-Majano, A.; Hughes, M.; Fernandez-Cabo, J.L. The fracture toughness and properties of thermally modified beech and ash at different moisture contents. Wood Sci. Technol. 2012, 46, 5–21. [Google Scholar] [CrossRef]
- Brito, A.F.; Calonego, F.W.; Bond, B.H.; Severo, E.T.D. Color changes, EMC, and biological resistance of thermally modified yellow poplar. Wood Fiber Sci. 2018, 50, 439–446. [Google Scholar] [CrossRef]
- Kačíková, D.; Kubovský, I.; Gaff, M.; Kačík, F. Changes of Meranti, Padauk, and Merbau Wood Lignin during the ThermoWood Process. Polymers 2021, 13, 993. [Google Scholar] [CrossRef]
- Kačíková, D.; Kubovský, I.; Ulbriková, N.; Kačík, F. The impact of thermal treatment on structural changes of teak and iroko wood lignins. Appl. Sci. 2020, 10, 5021. [Google Scholar] [CrossRef]
- Gašparík, M.; Gaff, M.; Kačík, F.; Sikora, A. Color and chemical changes in teak (Tectona grandis L. f.) and meranti (Shorea spp.) wood after thermal treatment. BioResources 2019, 14, 2667–2683. [Google Scholar] [CrossRef]
- Gaff, M.; Kubovský, I.; Sikora, A.; Kačíková, D.; Li, H.; Kubovský, M.; Kačík, F. Impact of thermal modification on color and chemical changes of African padauk, merbau, mahogany, and iroko wood species. Rev. Adv. Mater. Sci. 2023, 62, 20220277. [Google Scholar] [CrossRef]
- Korkut, S. Performance of three thermally treated tropical wood species commonly used in Turkey. Ind. Crops Prod. 2012, 36, 355–362. [Google Scholar] [CrossRef]
- Mburu, F.; Dumarçay, S.; Huber, F.; Petrissans, M.; Gérardin, P. Evaluation of thermally modified Grevillea robusta heartwood as an alternative to shortage of wood resource in Kenya: Characterisation of physicochemical properties and improvement of bio-resistance. Bioresour. Technol. 2007, 98, 3478–3486. [Google Scholar] [CrossRef]
- Lengowski, E.C.; Bonfatti Júnior, E.A.; Nisgoski, S.; Bolzon de Muñiz, G.I.; Klock, U. Properties of thermally modified teakwood. Maderas Cienc. Y Tecnol. 2021, 23. [Google Scholar] [CrossRef]
- Esteves, B.; Videira, R.; Pereira, H. Chemistry and ecotoxicity of heat-treated pine wood extractives. Wood Sci. Technol. 2011, 45, 661–676. [Google Scholar]
- Piernik, M.; Woźniak, M.; Pinkowski, G.; Szentner, K.; Ratajczak, I.; Krauss, A. Impact of the Heat Treatment Duration on Color and Selected Mechanical and Chemical Properties of Scots Pine Wood. Materials 2022, 15, 5425. [Google Scholar] [CrossRef] [PubMed]
- Kačík, F.; Kubovský, I.; Bouček, J.; Hrčka, R.; Gaff, M.; Kačíková, D. Color and Chemical Changes of Black Locust Wood during Heat Treatment. Forests 2022, 14, 73. [Google Scholar]
- Meier, E. The Wood Dictionary: From Acacia to Ziricote, a Guide to the World’s Wood; Sierra’s Ascent Publisher: San Francisco, CA, USA, 2021; p. 272. [Google Scholar]
- Wagenführ, R. Holzatlas, 6th ed.; Fachbuchverlag Publisher: Leipzig, Germany, 2007; p. 816. [Google Scholar]
- International Thermowood Association. Thermowood Handbook; International Thermowood Association: Helsinki, Finland, 2021; p. 55. [Google Scholar]
- TAPPI T 257 cm-02; Sampling and Preparing Wood for Analysis. Technical Association of the Pulp and Paper Industry. Tappi Tappi Press Atlanta: Atlanta, GA, USA, 2011.
- ASTM D 1107–96; Standard Test Method for Ethanol-Toluene Solubility of Wood. American Society for Testing and Materials: Philadelphia, PA, USA, 2021.
- ISO 187; Paper, board, and pulps—Standard atmosphere for conditioning and testing and procedure for monitoring the atmosphere and conditioning of samples. International Organization for Standardization: London, UK, 1990.
- ISO 11664-4; Colorimetry–Part 4: CIE 1976 L*a*b* colour space. International Organization for Standardization: London, UK, 2011.
- ISO/CIE 11664-6. Colorimetry–Part 6: CIEDE2000 Color-difference formula. International Organization for Standardization: London, UK, 2014.
- Kubelka, P. New contributions to the optics of intensely light-scattering materials. Part I. J. Opt. Soc. Am. 1948, 38, 448–457. [Google Scholar] [CrossRef]
- TAPPI T 280 pm-99. Acetone extractives of wood and pulp. Technical Association of the Pulp and Paper Industry. Tappi Press Atlanta: Atlanta, GA, USA, 2000.
- TAPPI T 204 cm-97. Solvent extractives of wood and pulp. Technical Association of the Pulp and Paper Industry. Tappi Press Atlanta: Atlanta, GA, USA, 1997.
- TAPPI T 264 cm-97. Preparation of wood for chemical analysis. Technical Association of the Pulp and Paper Industry. Tappi Press Atlanta: Atlanta, GA, USA, 1997.
- Lo Monaco, A.; Pelosi, C.; Agresti, G.; Picchio, R.; Rubino, G. Influence of thermal treatment on selected properties of chestnut wood and full range of its visual features. Drewno 2020, 63, 1–20. [Google Scholar]
- Correal-Mòdol, E.; Wimmer, T.; Huber, H.; Schnabel, T. Approach for color homogenisation of chestnut (Castanea sativa [Mill.]) by thermal modification. Int. Wood Prod. J. 2014, 5, 69–73. [Google Scholar] [CrossRef]
- Gonzáles-Peña, M.M.; Hale, M.D.C. Color in thermally modified wood of beech, Norway spruce and Scots pine. Part 1: Color evolution and color changes. Holzforshung 2009, 63, 385–393. [Google Scholar] [CrossRef]
- Tudorović, N.; Popović, Z.; Milić, G.; Popadić, R. Estimation of heat treated wood properties by color change. Bioresources 2012, 7, 799–815. [Google Scholar] [CrossRef]
- ASTM E313. Standard Practice for Calculating Yellowness and Whiteness Indices from Instrumentally Measured Color Coordinates. American Society for Testing and Materials: Philadelphia, PA, USA, 2015.
- Yu, J.; Huang, X.; Wu, C.; Wu, X.; Wang, G.; Jiang, P. Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties. Polymer 2012, 53, 471–480. [Google Scholar] [CrossRef]
- Baar, J.; Gryc, V. Color of tropical wood and discoloration due to simulated sunlight. Acta Univ. Agric. Silvic. Mendel. Brun. 2010, 58, 13–20. [Google Scholar] [CrossRef]
- Cuccui, I.; Negro, F.; Zanuttini, R.; Espinoza, M.; Allegretti, O. Thermo-vacuum modification of teak wood from fast-growth plantation. BioResources 2017, 12, 1903–1915. [Google Scholar] [CrossRef]
- Sehistedt-Persson, M. Color responses to heat-treatment of extractives and sap from pine and spruce. In Proceeding of the International IUFRO Wood Drying Conference, Brasov, Romania, 25 October 2003. [Google Scholar]
- Sundqvist, B. Color Changes and Acid Formation in Wood During. Ph.D. Thesis, Luleå Tekniska Universitet, Luleå, Sweden, 2004. [Google Scholar]
- Polcin, J.; Rapson, W.H. The interpretation of UV and visible spectrum of lignin. In Proceeding of the 55th Annual Meeting of the Technical Section, Montreal, QC, Canada; 1969; pp. 28–31. [Google Scholar]
- Keating, J.; Johansson, C.I.; Saddler, J.N.; Beatson, R.P. The nature of chromophores in high-extractives mechanical pulps: Western red cedar (Thuja plicata Donn) chemithermomechanical pulp (CTMP). Holzforschung 2006, 60, 365–371. [Google Scholar] [CrossRef]
- Chen, X.; Li, Y. Effect of heat treatment on microstructure and mechanical properties of high boron white cast iron. Mater. Sci. Eng. 2010, 528, 770–775. [Google Scholar] [CrossRef]
- Diouf, P.N.; Stevanovic, T.; Boutin, Y. The effect of extraction process on polyphenol content, triterpene composition and bioactivity of yellow birch (Betula alleghaniensis Britton) extracts. Ind. Crops Prod. 2009, 30, 297–303. [Google Scholar] [CrossRef]
- Bekhta, P.; Niemz, P. Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung 2003, 57, 539–546. [Google Scholar] [CrossRef]
- Čabalová, I.; Kačík, F.; Tribulová, T. The effects of heat treatment on the chemical alterations of oak wood. Key Eng. Mater. 2016, 688, 44–49. [Google Scholar] [CrossRef]
- Lai, Y.Z. Chemical degradation. In Wood and Cellulosic Chemistry; Hon, D.N.S., Shiraishi, N., Eds.; Marcel Dekker: New York, NY, USA, 1991; pp. 455–524. [Google Scholar]
- Saha, J.B.T.; Abia, D.; Dumarçay, S.; Ndikontar, M.K.; Gérardin, P.; Noah, J.N.; Perrin, D. Antioxidant activities, total phenolic contents and chemical compositions of extracts from four Cameroonian woods: Padouk (Pterocarpus soyauxii Taubb), tali (Erythrophleum suaveolens), moabi (Baillonella toxisperma), and movingui (Distemonanthus benthamianus). Ind. Crops Prod. 2013, 41, 71–77. [Google Scholar]
- Diouf, P.N.; Merlin, A.; Perrin, D. Antioxidant properties of wood extracts and color stability of woods. Ann. For. Sci. 2006, 63, 525–534. [Google Scholar] [CrossRef]
- Hafizoglu, H.; Holmbom, B. Chemical composition of extractives from Abies nordmanniana. Holz Als Roh-Und Werkst. 1995, 53, 273–275. [Google Scholar] [CrossRef]
- Fengel, D.; Wegener, G. Wood: Chemistry, Ultrastructure, Reactions; Walter De Gruyter: Berlin, Germany, 1989; p. 626. [Google Scholar]
- Stenius, P.; Gullichsen, J.; Paulapuro, H. Papermaking Science and Technology. In Forest Products Chemistry, 3rd ed.; Stenius, P., Ed.; Faper Oy: Helsinki, Finland, 2000; p. 350. [Google Scholar]
- Nuopponen, M.; Vuorinen, T.; Jämsä, S.; Viitaniemi, P. Thermal modifications in softwood studied by FT-IR and UV resonance Raman spectroscopies. J. Wood Chem. Technol. 2005, 24, 13–26. [Google Scholar] [CrossRef]
- Faix, O.; Meier, D.; Fortmann, I. Thermal degradation products of wood. Gas chromatographic separation and mass spectrometric characterization of monomeric lignin-derived products. Holz Als Roh-Und Werkst. 1990, 48, 281–285. [Google Scholar] [CrossRef]
- Červenka, E.; Král, Z.; Tomis, B. Chemistry of Wood and Cellulose I–III; The University of Chemical Technology in Pardubice: Pardubice, Czech Republic, 1980; p. 228. (In Czech) [Google Scholar]
- Chow, P.; Nakayama, F.S.; Blahnik, B.; Youngquist, J.A.; Coffelt, T.A. Chemical constituents and physical properties of guayule wood and bark. Ind. Crops Prod. 2008, 28, 303–308. [Google Scholar] [CrossRef]
- Ayadi, N.; Lejeune, F.; Charrier, F.; Charrier, B.; Merlin, A. Color stability of heat-treated wood during artificial weathering. Holz Als Roh-Und Werkst. 2003, 61, 221–226. [Google Scholar] [CrossRef]
- Van Nguyen, T.H.; Nguyen, T.T.; Ji, X.; Guo, M. Predicting Color Change in Wood During Heat Treatment Using an Artificial Neural Network Model. BioResources 2018, 13, 6250–6264. [Google Scholar] [CrossRef]
- Cirule, D.; Sansonetti, E.; Andersone, I.; Kuka, E.; Andersons, B. Enhancing Thermally Modified Wood Stability against Discoloration. Coatings 2021, 11, 81. [Google Scholar] [CrossRef]
- Palaiogiannis, D.; Chatzimitakos, T.; Athanasiadis, V.; Bozinou, E.; Makris, D.P.; Lalas, S.I. Successive Solvent Extraction of Polyphenols and Flavonoids from Cistus creticus L. Leaves. Oxygen 2023, 3, 274–286. [Google Scholar] [CrossRef]
- Hon, D.N.; Shiraishi, N. Wood, and Cellulosic Chemistry, Revised, and Expanded, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2000; p. 928. [Google Scholar]
- Tjeerdsma, B.F.; Militz, H. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Eur. J. Wood Wood Prod. 2005, 63, 102–111. [Google Scholar] [CrossRef]
- Lundquist, K. Acid degradation of lignin. Acta Chem. Scand. 1970, 24, 889–907. [Google Scholar] [CrossRef]
- Dünisch, O.; Richter, H.G.; Koch, G. Wood properties of juvenile and mature heartwood in Robinia pseudoacacia L. Wood Sci. Technol. 2010, 44, 301–313. [Google Scholar] [CrossRef]
- Charrier, B.; Haluk, J.P.; Metche, M. Characterization of European Oakwood Constituents Acting in the Brown Discolouration during Kiln Drying. Holzforschung 1995, 49, 168–172. [Google Scholar] [CrossRef]
- Tenorio, C.; Moya, R. Evaluation of wood properties of four ages of Cedrela odorata trees growing in agroforestry systems with Theobroma cacao in Costa Rica. Agrofor. Syst. 2019, 93, 973–988. [Google Scholar] [CrossRef]
- Biwôlé, J.J.E.; Biwolé, A.B.; Mfomo, J.Z.; Segovia, C.; Pizzi, A.; Chen, X.; Meausoone, P.J. Causes of differential behavior of extractives on the natural cold water durability of the welded joints of three tropical woods. J. Adhes. Sci. Technol. 2022, 36, 1314–1331. [Google Scholar] [CrossRef]
- Biwôlé, J.J.E.; Biwolé, A.B.; Mfomo, J.Z.; Pizzi, A.; Segovia, C.; Abessolo, D.; Meausoone, P.J. Iroko wood (Milicia excelsa CC berg), a good candidate for high-speed rotation-induced wood dowel welding: An assessment of its welding potential and the water resistance of its welded joints. Int. J. Adhes. Adhes. 2023, 123, 103360. [Google Scholar] [CrossRef]
- Yasuda, S.; Imai, T.; Fukushima, K.; Hamaguchi, E. Effect of the extractives of yellow meranti wood on the manufacture of plywood. Eur. J. Wood Wood Prod. 1998, 56, 87–89. [Google Scholar] [CrossRef]
- Geevananda, Y.A.; Gunawardana, P.; Sultanbawa, M.U.S.; Balasubramaniam, S. Distribution of some triterpenes and phenolic compounds in the extractives of endemic Dipterocarpaceae species of Sri Lanka. Phytochemistry 1980, 19, 1099–1102. [Google Scholar] [CrossRef]
- Kilic, A.; Niemz, P. Extractives in some tropical woods. Eur. J. Wood Wood Prod. 2012, 70, 79. [Google Scholar] [CrossRef]
- Malik, J.; Santoso, A.; Ozarska, B. Polymerised Merbau Extractives as Impregnating Material for Wood Properties Enhancement. In Proceeding of the Materials Science and Engineering, Bogor, Indonesia, 1 September 2020. [Google Scholar]
- Myo Aung, U. A Preliminary Study of Anthraquinone Extractives in Teak. Leaflet No. 8/87-88; Forest Research Institute: Yezin, Myanmar, 1988; p. 39. [Google Scholar]
- Simatupang, M.H.; Yamamoto, K. Properties of teakwood (Tectona grandis L.f.) as influenced by wood extractives and its importance for tree breeding. In Proceedings of the Regional Seminar on Site, Technology and Productivity od Teak Plantations, Chiang Mai, Thailand, 26–29 January 1999. [Google Scholar]
- Bhat, P.T.K. Chemical extractive compounds determining the brown-rot decay resistance of teak wood. Holz Als Roh-Und Werkst. 2007, 65, 121–124. [Google Scholar]
Trade Name (Samples Marking) | Latin Name | Occurrence | Color/Appearance |
---|---|---|---|
Spanish cedar (SC) | Cedrela odorata | Central and South America and the Caribbean; also, plantations | heartwood is light pink to reddish brown |
Iroko (IR) | Chlorophora excelsa | Africa, especially in the Ivory Coast | heartwood is yellow to golden or medium brown, with color tending to darken over time; pale yellow sapwood is demarcated from the heartwood |
Padouk (PA) | Pterocarpus soyauxii | Central and West Africa (e.g., Congo, Angola) | fresh heartwood is blood-red in color, changing to a dark purplish-brown with a red tinge over time |
Meranti (ME) | Shorea spp. | Southeast Asia (e.g., Laos, Philippines) | core varies depending on the origin and species, ranging from brownish-pink to red to dark red; it darkens further in the light or, on the contrary, pales |
Merbau (MB) | Intsia spp. | Southeast Asia (e.g., Burma, Indonesia), East Africa, and Australia (New Guinea) | fresh cut orangish-brown color, which ages to a darker reddish-brown; small yellow mineral deposits that can cause staining |
Teak (TE) | Tectona grandis | Native to southern Asia; widely on plantations throughout tropical regions of Africa, Asia, and Latin America | heartwood tends to be a golden or medium brown, with color darkening with age; often with dark brown or black stripes (2–8 mm wide) |
Wood Sample | Modification Temperature (°C) | L* | a* | b* | ΔE* | ISO Brightness | Yellowness (Y) |
---|---|---|---|---|---|---|---|
Sp. cedar (SC) | 20 (ref.) | 66.32 ± 0.34 | 12.24 ± 0.14 | 24.10 ± 0.14 | - | 20.06 ± 0.19 | 34.89 ± 0.24 |
180 | 40.42 ± 0.68 | 14.67 ± 0.25 | 23.78 ± 0.46 | 26.02 | 7.99 ± 0.16 | 14.95 ± 0.27 | |
200 | 35.49 ± 0.79 | 13.33 ± 0.09 | 20.49 ± 0.14 | 31.06 | 6.74 ± 0.15 | 11.82 ± 0.24 | |
220 | 26.00 ± 0.60 | 8.30 ± 0.29 | 13.93 ± 0.47 | 41.77 | 5.10 ± 0.04 | 7.58 ± 0.14 | |
Iroko (IR) | 20 (ref.) | 52.58 ± 1.26 | 9.81 ± 0.14 | 24.93 ± 1.23 | - | 10.99 ± 0.13 | 22.64 ± 0.29 |
180 | 52.27 ± 0.61 | 10.86 ± 0.25 | 28.69 ± 0.30 | 3.92 | 11.88 ± 0.14 | 23.62 ± 0.26 | |
200 | 29.44 ± 0.79 | 10.58 ± 0.41 | 14.86 ± 1.16 | 25.25 | 5.67 ± 0.04 | 8.33 ± 0.25 | |
220 | 17.52 ± 1.07 | 2.91 ± 0.36 | 4.19 ± 0.50 | 41.32 | 4.63 ± 0.14 | 5.03 ± 0.13 | |
Padouk (PA) | 20 (ref.) | 39.45 ± 0.81 | 29.00 ± 0.73 | 30.57 ± 1.35 | - | 5.32 ± 0.13 | 10.72 ± 0.37 |
180 | 28.89 ± 0.87 | 26.53 ± 0.40 | 26.19 ± 0.62 | 11.70 | 4.52 ± 0.03 | 8.99 ± 0.12 | |
200 | 22.03 ± 0.41 | 9.44 ± 0.42 | 10.68 ± 0.74 | 32.90 | 4.72 ± 0.17 | 6.08 ± 0.23 | |
220 | 22.40 ± 0.51 | 3.92 ± 0.30 | 4.17 ± 0.28 | 40.21 | 5.51 ± 0.06 | 6.08 ± 0.09 | |
Meranti (MT) | 20 (ref.) | 58.96 ± 0.31 | 10.09 ± 0.21 | 17.91 ± 0.24 | - | 18.66 ± 0.30 | 28.24 ± 0.40 |
180 | 40.25 ± 1.17 | 9.26 ± 0.49 | 19.91 ± 1.06 | 18.83 | 8.64 ± 0.22 | 14.54 ± 0.58 | |
200 | 30.87 ± 1.12 | 10.57 ± 0.42 | 19.68 ± 0.84 | 28.15 | 5.75 ± 0.14 | 10.01 ± 0.36 | |
220 | 18.09 ± 1.11 | 6.13 ± 0.72 | 10.67 ± 1.79 | 41.70 | 4.27 ± 0.04 | 5.70 ± 0.11 | |
Merbau (MB) | 20 (ref.) | 39.29 ± 3.26 | 13.54 ± 0.91 | 23.50 ± 4.55 | - | 7.27 ± 0.11 | 15.19 ± 0.21 |
180 | 24.13 ± 0.29 | 11.70 ± 0.33 | 12.11 ± 0.39 | 19.06 | 5.40 ± 0.05 | 7.42 ± 0.09 | |
200 | 17.43 ± 0.91 | 4.24 ± 0.51 | 5.24 ± 0.13 | 29.97 | 4.65 ± 0.03 | 5.24 ± 0.05 | |
220 | 22.52 ± 0.42 | 6.06 ± 0.31 | 7.94 ± 0.54 | 24.07 | 5.22 ± 0.06 | 6.54 ± 0.05 | |
Teak (TE) | 20 (ref.) | 40.38 ± 1.17 | 14.77 ± 0.23 | 30.19 ± 0.39 | - | 6.19 ± 0.09 | 13.62 ± 0.21 |
180 | 33.18 ± 1.08 | 11.32 ± 0.22 | 21.05 ± 0.15 | 12.14 | 6.26 ± 0.08 | 11.82 ± 0.16 | |
200 | 19.49 ± 0.92 | 8.87 ± 0.54 | 10.27 ± 0.69 | 29.47 | 4.33 ± 0.06 | 5.56 ± 0.13 | |
220 | 15.05 ± 0.44 | 4.17 ± 0.31 | 5.21 ± 0.41 | 37.13 | 4.03 ± 0.12 | 4.47 ± 0.11 |
Wood Sample | Modification Temperature (°C) | Extractives in Acetone | Extractives in Ethanol | Extractives in Ethanol-Toluene | ||||||
---|---|---|---|---|---|---|---|---|---|---|
w (wt.%) | ΔE* | Yi | w (wt.%) | ΔE* | Yi | w (wt.%) | ΔE* | Yi | ||
Sp. cedar (SC) | 20 (ref.) | 5.00 ± 0.00 | - | 40.70 | 5.13 ± 1.32 | - | 180.80 | 2.31 ± 0.60 | - | 49.40 |
180 | 1.82 ± 0.13 | 15.81 | 62.40 | 2.95 ± 0.95 | 60.43 | 74.70 | 2.60 ± 0.24 | 33.85 | 97.00 | |
200 | 2.14 ± 0.06 | 29.73 | 85.00 | 4.37 ± 0.20 | 51.91 | 82.80 | 2.89 ± 0.65 | 30.99 | 97.40 | |
220 | 0.11 ± 0.00 | 49.90 | 107.20 | 3.30 ± 0.47 | 24.66 | 177.00 | 1.38 ± 0.04 | 76.42 | 164.90 | |
Iroko (IR) | 20 (ref.) | 4.98 ± 0.00 | - | 28.90 | 2.44 ± 0.61 | - | 129.30 | 3.64 ± 0.82 | - | 103.40 |
180 | 0.42 ± 0.04 | 9.93 | 35.90 | 1.40 ± 0.23 | 28.33 | 89.90 | 0.35 ± 0.05 | 36.00 | 149.60 | |
200 | 1.36 ± 0.11 | 95.50 | 89.50 | 3.59 ± 0.00 | 12.93 | 137.00 | 1.27 ± 0.16 | 24.90 | 135.10 | |
220 | 0.79 ± 0.06 | 72.33 | 137.70 | 2.26 ± 0.08 | 28.06 | 189.00 | 1.27 ± 0.01 | 63.78 | 228.10 | |
Padouk (PA) | 20 (ref.) | 13.20 ± 0.00 | - | 210.80 | 4.81 ± 0.17 | - | 232.60 | 4.90 ± 0.00 | - | 271.70 |
180 | 2.45 ± 0.36 | 16.53 | 199.40 | 5.05 ± 0.22 | 34.40 | 214.60 | 3.05 ± 0.03 | 10.53 | 251.80 | |
200 | 1.20 ± 0.08 | 35.96 | 215.70 | 0.70 ± 0.02 | 47.92 | 138.90 | 2.29 ± 0.26 | 10.68 | 242.30 | |
220 | 3.05 ± 0.08 | 28.04 | 159.00 | 1.69 ± 0.08 | 48.18 | 155.30 | 1.39 ± 0.07 | 38.87 | 189.00 | |
Meranti (MT) | 20 (ref.) | 4.15 ± 0.00 | - | 15.00 | 1.23 ± 0.41 | - | 29.80 | 3.27 ± 0.40 | - | 17.80 |
180 | 0.65 ± 0.08 | 38.02 | 54.10 | 3.57 ± 0.37 | 60.63 | 124.20 | 1.63 ± 0.37 | 56.62 | 111.60 | |
200 | 1.46 ± 0.12 | 83.58 | 125.00 | 1.57 ± 0.37 | 79.67 | 151.40 | 1.21 ± 0.06 | 62.49 | 105.40 | |
220 | 1.80 ± 0.02 | 66.87 | 112.90 | 1.70 ± 0.12 | 86.25 | 159.90 | 1.16 ± 0.17 | 64.50 | 111.20 | |
Merbau (MB) | 20 (ref.) | 7.37 ± 0.57 | - | 116.70 | 4.86 ± 0.15 | - | 221.50 | 7.49 ± 0.02 | - | 202.80 |
180 | 0.90 ± 0.03 | 26.44 | 99.00 | 4.56 ± 0.04 | 16.25 | 240.30 | 1.57 ± 0.22 | 10.71 | 209.60 | |
200 | 0.84 ± 0.03 | 31.94 | 169.40 | 4.21 ± 0.09 | 78.93 | 277.30 | 1.40 ± 0.05 | 15.07 | 169.80 | |
220 | 2.17 ± 0.13 | 47.37 | 189.10 | 1.69 ± 0.38 | 59.25 | 91.90 | 1.75 ± 0.23 | 36.04 | 134.20 | |
Teak (TE) | 20 (ref.) | 4.6 ± 0.03 | - | 182.80 | 1.95 ± 0.09 | - | 153.90 | 1.27 ± 0.11 | - | 202.70 |
180 | 2.57 ± 0.03 | 35.88 | 132.50 | 3.06 ± 0.18 | 27.61 | 125.20 | 1.38 ± 0.11 | 38.83 | 132.60 | |
200 | 1.75 ± 0.46 | 25.50 | 134.70 | 0.60 ± 0.03 | 35.93 | 85.40 | 1.33 ± 0.05 | 30.35 | 175.00 | |
220 | 0.83 ± 0.08 | 26.50 | 149.50 | 1.83 ± 0.01 | 22.49 | 163.70 | 3.05 ± 0.47 | 40.77 | 166.00 |
Variable | Yi(Ac) | Yi(Et) | Yi(Et-To) |
---|---|---|---|
Y (Yellowness) | −0.7076 | −0.3219 | −0.6022 |
L* | a* | b* | |
0.9719 | 0.2084 | 0.6141 | |
L*(Ac) | a*(Ac) | b*(Ac) | |
0.6502 | −0.5561 | −0.7579 | |
L*(Et) | a*(Et) | b*(Et) | |
0.2217 | −0.2174 | −0.2881 | |
L*(Et-To) | a*(Et-To) | b*(Et-To) | |
0.5746 | −0.5467 | −0.6007 |
N = 24 | Regression Summary for Dependent Variable: Y R = 0.9866, R2 = 0.9733, Adjusted R2 = 0.9708 F (2.21) = 383.06, p < 0.0000, Std. The Error of Estimate: 1.3641 | |||
---|---|---|---|---|
b* | b | t(21) | p-Value | |
Intercept | −5.7726 ± 0.7337 | −7.8675 | 0.0000 | |
L* | 1.1630 ± 0.0537 | 0.6633 ± 0.0306 | 21.6611 | 0.0000 |
b* | −0.2555 ± 0.0537 | −0.2388 ± 0.0502 | −4.7595 | 0.0001 |
N = 24 | Regression summary for dependent variable: Y R = 0.7141, R2 = 0.5099, adjusted R2 = 0.4364 F (3.20) = 6.9361, p < 0.0022, Std. The error of estimate: 5.9908 | |||
Intercept | 23.7871 ± 3.6857 | 6.4540 | 0.0000 | |
Yi(Ac) | −0.6029 ± 0.2488 | −0.0810 ± 0.03343 | −2.4238 | 0.0250 |
Yi(Et) | 0.0597 ± 0.1978 | 0.0080 ± 0.0264 | 0.3022 | 0.7656 |
Yi(Et-To) | −0.1702 ± 0.2786 | −0.0214 ± 0.0351 | −0.6109 | 0.5481 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jurczyková, T.; Šárovec, O.; Kačík, F.; Hájková, K.; Jurczyk, T.; Hrčka, R. Chromophores’ Contribution to Color Changes of Thermally Modified Tropical Wood Species. Polymers 2023, 15, 4000. https://doi.org/10.3390/polym15194000
Jurczyková T, Šárovec O, Kačík F, Hájková K, Jurczyk T, Hrčka R. Chromophores’ Contribution to Color Changes of Thermally Modified Tropical Wood Species. Polymers. 2023; 15(19):4000. https://doi.org/10.3390/polym15194000
Chicago/Turabian StyleJurczyková, Tereza, Ondřej Šárovec, František Kačík, Kateřina Hájková, Tomáš Jurczyk, and Richard Hrčka. 2023. "Chromophores’ Contribution to Color Changes of Thermally Modified Tropical Wood Species" Polymers 15, no. 19: 4000. https://doi.org/10.3390/polym15194000
APA StyleJurczyková, T., Šárovec, O., Kačík, F., Hájková, K., Jurczyk, T., & Hrčka, R. (2023). Chromophores’ Contribution to Color Changes of Thermally Modified Tropical Wood Species. Polymers, 15(19), 4000. https://doi.org/10.3390/polym15194000