Recent Progress in Printed Photonic Devices: A Brief Review of Materials, Devices, and Applications
Abstract
:1. Introduction
2. Materials for Printed Photonic Devices
2.1. Organic Semiconductor Materials
2.2. Inorganic Semiconductor Materials
2.3. 2D Materials
2.4. Materials Selection
3. Printing Techniques for Photonic Devices
3.1. Non-Contact Printing Techniques
3.1.1. Inkjet Printing
3.1.2. Aerosol Printing
3.2. Contact Printing Techniques
3.2.1. Gravure Printing
3.2.2. Offset Printing
3.2.3. Flexographic Printing
3.2.4. Screen Printing
3.2.5. Pad Printing
4. Device Components and Their Use in Printed Photonic Devices
4.1. Light-Emitting Device Components
4.2. Photodetectors and Sensors
4.3. Waveguides and Optical Components
4.4. Device Characterization and Performance Evaluation
5. Applications of Printed Photonic Devices
5.1. Printed Photonic Integrated Circuits (PICs)
5.2. Wearable Electronics and Smart Textiles
5.3. Internet of Things (IoT) and Smart Environments
5.4. Biomedical and Healthcare Applications
5.5. Energy Harvesting and Sustainable Technologies
6. Challenges and Future Perspectives for Printed Photonic Devices
6.1. Alignment and Registration
6.2. Material Compatibility and Interface Engineering
6.3. Device Reliability and Stability
6.4. Scalability and Manufacturing Processes
7. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chung, S.; Cho, K.; Lee, T. Recent Progress in Inkjet-Printed Thin-Film Transistors. Adv. Sci. 2019, 6, 1801445. [Google Scholar] [CrossRef] [PubMed]
- Awad, A.; Fina, F.; Goyanes, A.; Gaisford, S.; Basit, A.W. Advances in Powder Bed Fusion 3D Printing in Drug Delivery and Healthcare. Adv. Drug Deliv. Rev. 2021, 174, 406–424. [Google Scholar] [CrossRef]
- Zhu, J.; Wu, P.; Chao, Y.; Yu, J.; Zhu, W.; Liu, Z.; Xu, C. Recent Advances in 3D Printing for Catalytic Applications. Chem. Eng. J. 2022, 433, 134341. [Google Scholar] [CrossRef]
- Xia, Z.; Cai, T.; Li, X.; Zhang, Q.; Shuai, J.; Liu, S. Recent Progress of Printing Technologies for High-Efficient Organic Solar Cells. Catalysts 2023, 13, 156. [Google Scholar] [CrossRef]
- Prendergast, M.E.; Burdick, J.A. Recent Advances in Enabling Technologies in 3D Printing for Precision Medicine. Adv. Mater. 2020, 32, 1902516. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, D.F.; Majidi, C.; Tavakoli, M. Digitally Printed Stretchable Electronics: A Review. J. Mater. Chem. C 2019, 7, 14035–14068. [Google Scholar] [CrossRef]
- Júnior, H.L.O.; Neves, R.M.; Monticeli, F.M.; Agnol, L.D. Smart Fabric Textiles: Recent Advances and Challenges. Textiles 2022, 2, 582–605. [Google Scholar] [CrossRef]
- Kao, H.-L.; Chuang, C.-H.; Cho, C.-L. Inkjet-Printed Filtering Antenna on a Textile for Wearable Applications. In Proceedings of the 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 28–31 May 2019; pp. 258–263. [Google Scholar]
- Du, X.; Wankhede, S.P.; Prasad, S.; Shehri, A.; Morse, J.; Lakal, N. A Review of Inkjet Printing Technology for Personalized-Healthcare Wearable Devices. J. Mater. Chem. C 2022, 10, 14091–14115. [Google Scholar] [CrossRef]
- Borghetti, M.; Cantù, E.; Sardini, E.; Serpelloni, M. Future Sensors for Smart Objects by Printing Technologies in Industry 4.0 Scenario. Energies 2020, 13, 5916. [Google Scholar] [CrossRef]
- Righini, G.C.; Krzak, J.; Lukowiak, A.; Macrelli, G.; Varas, S.; Ferrari, M. From Flexible Electronics to Flexible Photonics: A Brief Overview. Opt. Mater. 2021, 115, 111011. [Google Scholar] [CrossRef]
- Kajii, H.; Yoshinaga, M.; Karaki, T.; Kawata, M.; Okui, H.; Morifuji, M.; Kondow, M. Invited: Polymer Light-Emitting Devices with Selectively Transparent Photonic Crystals Consisting of Printed Inorganic/Organic Hybrid Dielectric Films. In Proceedings of the 2019 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK), Kyoto, Japan, 14–15 November 2019; pp. 31–34. [Google Scholar]
- Manzi, J.; Weltner, A.E.; Varghese, T.; McKibben, N.; Busuladzic-Begic, M.; Estrada, D.; Subbaraman, H. Plasma-Jet Printing of Colloidal Thermoelectric Bi2Te3 Nanoflakes for Flexible Energy Harvesting. Nanoscale 2023, 15, 6596–6606. [Google Scholar] [CrossRef] [PubMed]
- Saeidi-Javash, M.; Kuang, W.; Dun, C.; Zhang, Y. 3D Conformal Printing and Photonic Sintering of High-Performance Flexible Thermoelectric Films Using 2D Nanoplates. Adv. Funct. Mater. 2019, 29, 1901930. [Google Scholar] [CrossRef]
- Dadras-Toussi, O.; Raghunathan, V.; Majd, S.; Abidian, M.R. Direct Laser 3D Printing of Organic Semiconductor Microdevices for Bioelectronics and Biosensors. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, UK, 11–15 July 2022; pp. 1569–1572. [Google Scholar]
- Zhang, L.; Yang, H.; Tang, Y.; Xiang, W.; Wang, C.; Xu, T.; Wang, X.; Xiao, M.; Zhang, J. High-Performance CdSe/CdS@ZnO Quantum Dots Enabled by ZnO Sol as Surface Ligands: A Novel Strategy for Improved Optical Properties and Stability. Chem. Eng. J. 2022, 428, 131159. [Google Scholar] [CrossRef]
- Ji, Y.; Xu, W.; Rasskazov, I.L.; Liu, H.; Hu, J.; Liu, M.; Zhou, D.; Bai, X.; Ågren, H.; Song, H. Perovskite Photonic Crystal Photoelectric Devices. Appl. Phys. Rev. 2022, 9, 041319. [Google Scholar] [CrossRef]
- Fudouzi, H.; Xia, Y. Colloidal crystals with tunable colors and their use as photonic papers. Langmuir 2003, 19, 9653–9660. [Google Scholar] [CrossRef]
- Kumar, K.; Duan, H.; Hegde, R.S.; Koh, S.C.; Wei, J.N.; Yang, J.K. Printing color at the optical diffraction limit. Nat. Nanotechnol. 2012, 7, 557–561. [Google Scholar] [CrossRef]
- Ye, S.; Fu, Q.; Ge, J. Invisible Photonic Prints Shown by Deformation. Adv. Funct. Mater. 2014, 24, 6430–6438. [Google Scholar] [CrossRef]
- Sun, S.; Zhou, Z.; Zhang, C.; Gao, Y.; Duan, Z.; Xiao, S.; Song, Q. All-dielectric full-color printing with TiO2 metasurfaces. ACS Nano 2017, 11, 4445–4452. [Google Scholar] [CrossRef]
- Kim, H.; Ge, J.; Kim, J.; Choi, S.-E.; Lee, H.; Lee, H.; Park, W.; Yin, Y.; Kwon, S. Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal. Nat. Photonics 2009, 3, 534–540. [Google Scholar] [CrossRef]
- Smith, S.D. Lasers, Nonlinear Optics and Optical Computers. Nature 1985, 316, 319–324. [Google Scholar] [CrossRef]
- Yan, R.; Pausauskie, P.; Huang, J.; Yang, P. Direct Photonic–Plasmonic Coupling and Routing in Single Nanowires. Proc. Natl. Acad. Sci. USA 2009, 106, 21045–21050. [Google Scholar] [CrossRef]
- Law, M.; Sirbuly, D.J.; Johnson, J.C.; Goldberger, J.; Saykally, R.J.; Yang, P. Nanoribbon Waveguides for Subwavelength Photonics Integration. Science 2004, 305, 1269–1273. [Google Scholar] [CrossRef]
- O’Brien, J.L.; Furusawa, A.; Vučković, J. Photonic Quantum Technologies. Nat. Photonics 2009, 3, 687–695. [Google Scholar] [CrossRef] [Green Version]
- Barrelet, C.J.; Greytak, A.B.; Lieber, C.M. Nanowire Photonic Circuit Elements. Nano Lett. 2004, 4, 1981–1985. [Google Scholar] [CrossRef]
- Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface Plasmon Subwavelength Optics. Nature 2003, 424, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Sirbuly, D.J.; Law, M.; Pauzauskie, P.; Yan, H.; Maslov, A.V.; Knutsen, K.; Ning, C.-Z.; Saykally, R.J.; Yang, P. Optical Routing and Sensing with Nanowire Assemblies. Proc. Natl. Acad. Sci. USA 2005, 102, 7800–7805. [Google Scholar] [CrossRef] [PubMed]
- Winckler, P.A. Reader in the History of Books and Printing; Greenwood Publishing Group: Westport, CT, USA; Information Handling Services: Englewood, CO, USA, 1983; Volume 26. [Google Scholar]
- Busch, K.; Lölkes, S.; Wehrspohn, R.B.; Föll, H. (Eds.) Photonic Crystals: Advances in Design, Fabrication, and Characterization; John Wiley & Sons: Somerset, NJ, USA, 2006. [Google Scholar]
- Sundaramurthi, D.; Rauf, S.; Hauser, C. 3D Bioprinting Technology for Regenerative Medicine Applications. Int. J. Bioprint. 2016, 2, 9–26. [Google Scholar] [CrossRef]
- Soref, R. The Past, Present, and Future of Silicon Photonics. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 1678–1687. [Google Scholar] [CrossRef]
- Del Pozo, M.; Sol, J.A.H.P.; Schenning, A.P.H.J.; Debije, M.G. 4D Printing of Liquid Crystals: What’s Right for Me? Adv. Mater. 2022, 34, 2104390. [Google Scholar] [CrossRef]
- Melchels, F.P.W.; Feijen, J.; Grijpma, D.W. A Review on Stereolithography and Its Applications in Biomedical Engineering. Biomaterials 2010, 31, 6121–6130. [Google Scholar] [CrossRef] [Green Version]
- Derby, B. Printing and Prototyping of Tissues and Scaffolds. Science 2012, 338, 921–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LaFratta, C.N.; Fourkas, J.T.; Baldacchini, T.; Farrer, R.A. Multiphoton Fabrication. Angew. Chem. Int. Ed. 2007, 46, 6238–6258. [Google Scholar] [CrossRef] [PubMed]
- Fischer, J.; Wegener, M. Three-Dimensional Optical Laser Lithography beyond the Diffraction Limit. Laser Photonics Rev. 2013, 7, 22–44. [Google Scholar] [CrossRef]
- Cui, Z. Printed Electronics: Materials, Technologies and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Liu, L.; Shen, Z.; Zhang, X.; Ma, H. Highly Conductive Graphene/Carbon Black Screen Printing Inks for Flexible Electronics. J. Colloid Interface Sci. 2021, 582, 12–21. [Google Scholar] [CrossRef]
- Morgan, M.L.; Curtis, D.J.; Deganello, D. Control of Morphological and Electrical Properties of Flexographic Printed Electronics through Tailored Ink Rheology. Org. Electron. 2019, 73, 212–218. [Google Scholar] [CrossRef]
- Verboven, I.; Deferme, W. Printing of Flexible Light Emitting Devices: A Review on Different Technologies and Devices, Printing Technologies and State-of-the-Art Applications and Future Prospects. Prog. Mater. Sci. 2021, 118, 100760. [Google Scholar] [CrossRef]
- Sampaio, P.G.V.; González, M.O.A.; de Oliveira Ferreira, P.; da Cunha Jácome Vidal, P.; Pereira, J.P.P.; Ferreira, H.R.; Oprime, P.C. Overview of Printing and Coating Techniques in the Production of Organic Photovoltaic Cells. Int. J. Energy Res. 2020, 44, 9912–9931. [Google Scholar] [CrossRef]
- Jiang, L.; Nishant, A.; Frish, J.; Kleine, T.S.; Brusberg, L.; Himmelhuber, R.; Kim, K.-J.; Pyun, J.; Pau, S.; Norwood, R.A.; et al. SmartPrint Single-Mode Flexible Polymer Optical Interconnect for High Density Integrated Photonics. J. Light. Technol. JLT 2022, 40, 3839–3844. [Google Scholar] [CrossRef]
- Khan, S.; Ali, S.; Bermak, A. Recent Developments in Printing Flexible and Wearable Sensing Electronics for Healthcare Applications. Sensors 2019, 19, 1230. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, J.; Brito-Pereira, R.; Gonçalves, B.F.; Etxebarria, I.; Lanceros-Mendez, S. Recent Developments on Printed Photodetectors for Large Area and Flexible Applications. Org. Electron. 2019, 66, 216–226. [Google Scholar] [CrossRef]
- Rosker, E.S.; Sandhu, R.; Hester, J.; Goorsky, M.S.; Tice, J. Printable Materials for the Realization of High Performance RF Components: Challenges and Opportunities. Int. J. Antennas Propag. 2018, 2018, e9359528. [Google Scholar] [CrossRef] [Green Version]
- Francis, B.M.; Ponraj, J.S.; Dhanabalan, B.; Manavalan, R.K.; Veluswamy, P.; Yin, P.; Al-Hartomy, O.A.; Al-Ghamdi, A.; Wageh, S.; Zhang, H.; et al. Two-dimensional material-based printed photonics: A review. 2D Mater. 2022, 9, 042003. [Google Scholar] [CrossRef]
- Zhang, C.; Subbaraman, H.; Li, Q.; Pan, Z.; Ok, J.G.; Ling, T.; Chung, C.-J.; Zhang, X.; Lin, X.; Chen, R.T.; et al. Printed photonic elements: Nanoimprinting and beyond. J. Mater. Chem. C 2016, 4, 5133–5153. [Google Scholar] [CrossRef]
- Hunde, B.R.; Woldeyohannes, A.D. 3D Printing and Solar Cell Fabrication Methods: A Review of Challenges, Opportunities, and Future Prospects. Results Opt. 2023, 11, 100385. [Google Scholar] [CrossRef]
- Wiklund, J.; Karakoç, A.; Palko, T.; Yiğitler, H.; Ruttik, K.; Jäntti, R.; Paltakari, J. A Review on Printed Electronics: Fabrication Methods, Inks, Substrates, Applications and Environmental Impacts. J. Manuf. Mater. Process. 2021, 5, 89. [Google Scholar] [CrossRef]
- Rao, C.H.; Avinash, K.; Varaprasad, B.K.S.V.L.; Goel, S. A Review on Printed Electronics with Digital 3D Printing: Fabrication Techniques, Materials, Challenges and Future Opportunities. J. Electron. Mater. 2022, 51, 2747–2765. [Google Scholar] [CrossRef]
- Tong, C. Printed Flexible Organic Light-Emitting Diodes. In Advanced Materials for Printed Flexible Electronics; Tong, C., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 347–399. [Google Scholar]
- Sharma, A.; Masoumi, S.; Gedefaw, D.; O’Shaughnessy, S.; Baran, D.; Pakdel, A. Flexible Solar and Thermal Energy Conversion Devices: Organic Photovoltaics (OPVs), Organic Thermoelectric Generators (OTEGs) and Hybrid PV-TEG Systems. Appl. Mater. Today 2022, 29, 101614. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.; Lee, J.-M.; Facchetti, A.; Marks, T.J.; Park, S.K. Recent Advances in Low-Dimensional Nanomaterials for Photodetectors. Small Methods 2023, 2300246. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.; Pang, Y.; Bao, G.; Jiang, J.; Yang, P.; Chen, Y.; Rao, T.; Liao, W. Printed Electronics Based on 2D Material Inks: Preparation, Properties, and Applications toward Memristors. Small Methods 2023, 7, 2201156. [Google Scholar] [CrossRef]
- Fukuta, Y.; Miyata, T.; Hamanaka, Y. Fabrication of Two-Dimensional Hybrid Organic–Inorganic Lead Halide Perovskites with Controlled Multilayer Structures by Liquid-Phase Laser Ablation. J. Mater. Chem. C 2023, 11, 910–916. [Google Scholar] [CrossRef]
- Park, S.; Shou, W.; Makatura, L.; Matusik, W.; Fu, K. 3D Printing of Polymer Composites: Materials, Processes, and Applications. Matter 2022, 5, 43–76. [Google Scholar] [CrossRef]
- Han, X.-Y.; Wu, Z.-L.; Yang, S.-C.; Shen, F.-F.; Liang, Y.-X.; Wang, L.-H.; Wang, J.-Y.; Ren, J.; Jia, L.-Y.; Zhang, H.; et al. Recent Progress of Imprinted Polymer Photonic Waveguide Devices and Applications. Polymers 2018, 10, 603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, W. Inorganic Nanomaterials for Printed Electronics: A Review. Nanoscale 2017, 9, 7342–7372. [Google Scholar] [CrossRef] [PubMed]
- Parola, S.; Julián-López, B.; Carlos, L.D.; Sanchez, C. Optical Properties of Hybrid Organic-Inorganic Materials and Their Applications. Adv. Funct. Mater. 2016, 26, 6506–6544. [Google Scholar] [CrossRef]
- Lee, C.; Schuck, P.J. Photodarkening, Photobrightening, and the Role of Color Centers in Emerging Applications of Lanthanide-Based Upconverting Nanomaterials. Annu. Rev. Phys. Chem. 2023, 74, 415–438. [Google Scholar] [CrossRef]
- Kwon, K.-S.; Rahman, M.K.; Phung, T.H.; Hoath, S.D.; Jeong, S.; Kim, J.S. Review of Digital Printing Technologies for Electronic Materials. Flex. Print. Electron. 2020, 5, 043003. [Google Scholar] [CrossRef]
- Ru, C.; Luo, J.; Xie, S.; Sun, Y. A Review of Non-Contact Micro- and Nano-Printing Technologies. J. Micromech. Microeng. 2014, 24, 053001. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Xia, X.; Cheng, Z.; Wei, K.; Jiang, X.; Dong, J.; Zhang, H. All-Optical Modulator Using MXene Inkjet-Printed Microring Resonator. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 5900306. [Google Scholar] [CrossRef]
- Alamán, J.; Alicante, R.; Peña, J.I.; Sánchez-Somolinos, C. Inkjet Printing of Functional Materials for Optical and Photonic Applications. Materials 2016, 9, 910. [Google Scholar] [CrossRef] [Green Version]
- Secor, E.B. Principles of Aerosol Jet Printing. Flex. Print. Electron. 2018, 3, 035002. [Google Scholar] [CrossRef]
- Binder, S.; Glatthaar, M.; Rädlein, E. Analytical Investigation of Aerosol Jet Printing. Aerosol Sci. Technol. 2014, 48, 924–929. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, A.; Frisbie, C.D.; Francis, L.F. Optimization of Aerosol Jet Printing for High-Resolution, High-Aspect Ratio Silver Lines. ACS Appl. Mater. Interfaces 2013, 5, 4856–4864. [Google Scholar] [CrossRef] [PubMed]
- Vlnieska, V.; Gilshtein, E.; Kunka, D.; Heier, J.; Romanyuk, Y.E. Aerosol Jet Printing of 3D Pillar Arrays from Photopolymer Ink. Polymers 2022, 14, 3411. [Google Scholar] [CrossRef] [PubMed]
- Grau, G.; Cen, J.; Kang, H.; Kitsomboonloha, R.; Scheideler, W.J.; Subramanian, V. Gravure-Printed Electronics: Recent Progress in Tooling Development, Understanding of Printing Physics, and Realization of Printed Devices. Flex. Print. Electron. 2016, 1, 023002. [Google Scholar] [CrossRef]
- Witomska, S.; Leydecker, T.; Ciesielski, A.; Samorì, P. Production and Patterning of Liquid Phase–Exfoliated 2D Sheets for Applications in Optoelectronics. Adv. Funct. Mater. 2019, 29, 1901126. [Google Scholar] [CrossRef] [Green Version]
- Sico, G.; Montanino, M.; Prontera, C.T.; De Girolamo Del Mauro, A.; Minarini, C. Gravure printing for thin film ceramics manufacturing from nanoparticles. Ceram. Int. 2018, 44, 19526–19534. [Google Scholar] [CrossRef]
- Sico, G.; Montanino, M.; Loffredo, F.; Borriello, C.; Miscioscia, R. Gravure Printing for PVDF Thin-Film Pyroelectric Device Manufacture. Coatings 2022, 12, 1020. [Google Scholar] [CrossRef]
- Fu, S.; Yu, L.; Chen, J. Advances in Gravure Printing for Printed Electronics: Materials and Manufacturing Perspectives. J. Mater. Chem. C 2018, 6, 2615–2632. [Google Scholar]
- Valentine, A.D.; Busbee, T.A.; Boley, J.W.; Raney, J.R.; Chortos, A.; Kotikian, A.; Berrigan, J.D.; Durstock, M.F.; Lewis, J.A. Hybrid 3D printing of soft electronics. Adv. Mater. 2017, 29, 1703817. [Google Scholar] [CrossRef]
- Alm, H.K.; Ström, G.; Schoelkopf, J.; Gane, P. Ink-Lift-off during Offset Printing: A Novel Mechanism behind Ink–Paper Coating Adhesion Failure. J. Adhes. Sci. Technol. 2015, 29, 370–391. [Google Scholar]
- Maddipatla, D.; Narakathu, B.B.; Atashbar, M. Recent Progress in Manufacturing Techniques of Printed and Flexible Sensors: A Review. Biosensors 2020, 10, 199. [Google Scholar] [CrossRef]
- Simonenko, N.P.; Fisenko, N.A.; Fedorov, F.S.; Simonenko, T.L.; Mokrushin, A.S.; Simonenko, E.P.; Korotcenkov, G.; Sysoev, V.V.; Sevastyanov, V.G.; Kuznetsov, N.T. Printing Technologies as an Emerging Approach in Gas Sensors: Survey of Literature. Sensors 2022, 22, 3473. [Google Scholar] [CrossRef]
- Liu, Q.; Tian, B.; Liang, J.; Wu, W. Recent Advances in Printed Flexible Heaters for Portable and Wearable Thermal Management. Mater. Horiz. 2021, 8, 1634–1656. [Google Scholar] [CrossRef]
- Gafurov, A.N.; Phung, T.H.; Ryu, B.-H.; Kim, I.; Lee, T.-M. AI-Aided Printed Line Smearing Analysis of the Roll-to-Roll Screen Printing Process for Printed Electronics. Int. J. Precis. Eng. Manuf.-Green Technol. 2023, 10, 339–352. [Google Scholar] [CrossRef]
- Marra, F.; Minutillo, S.; Tamburrano, A.; Sarto, M.S. Production and Characterization of Graphene Nanoplatelet-Based Ink for Smart Textile Strain Sensors via Screen Printing Technique. Mater. Des. 2021, 198, 109306. [Google Scholar] [CrossRef]
- Jaafar, A.; Schoinas, S.; Passeraub, P. Pad-Printing as a Fabrication Process for Flexible and Compact Multilayer Circuits. Sensors 2021, 21, 6802. [Google Scholar] [CrossRef]
- Tekcin, M.; Paker, S.; Bahadir, S.K. UHF-RFID Enabled Wearable Flexible Printed Sensor with Antenna Performance. AEU—Int. J. Electron. Commun. 2022, 157, 154410. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, X.; Su, W.; Cui, Z.; Lai, W.-Y. In-Depth Investigation of Inkjet-Printed Silver Electrodes over Large-Area: Ink Recipe, Flow, and Solidification. Adv. Mater. Interfaces 2022, 9, 2102548. [Google Scholar] [CrossRef]
- Zeng, M.; Du, Y.; Jiang, Q.; Kempf, N.; Wei, C.; Bimrose, M.V.; Tanvir, A.N.M.; Xu, H.; Chen, J.; Kirsch, D.J.; et al. High-Throughput Printing of Combinatorial Materials from Aerosols. Nature 2023, 617, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Tiara, A.M.; Moon, H.; Cho, G.; Lee, J. Fully Roll-to-Roll Gravure Printed Electronics: Challenges and the Way to Integrating Logic Gates. Jpn. J. Appl. Phys. 2022, 61, SE0802. [Google Scholar]
- Havenko, S.; Ohirko, M.; Ryvak, P.; Kotmalova, O. Determining the Factors That Affect the Quality of Test Prints at Flexographic Printing. East.-Eur. J. Enterp. Technol. 2020, 2, 53–63. [Google Scholar] [CrossRef]
- Lin, Q.; Zhu, Y.; Wang, Y.; Li, D.; Zhao, Y.; Liu, Y.; Li, F.; Huang, W. Flexible Quantum Dot Light-Emitting Device for Emerging Multifunctional and Smart Applications. Adv. Mater. 2023, 2210385. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Liu, D.; Zhu, F.; Yan, D. An Efficient Solid-Solution Crystalline Organic Light-Emitting Diode with Deep-Blue Emission. Nat. Photonics 2023, 17, 264–272. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, C.; Yu, X.; Zhang, H.; Han, M. Multilayer Flexible Electronics: Manufacturing Approaches and Applications. Mater. Today Phys. 2022, 23, 100647. [Google Scholar] [CrossRef]
- Chen, D.-H.; Gliemann, H.; Wöll, C. Layer-by-Layer Assembly of Metal-Organic Framework Thin Films: Fabrication and Advanced Applications. Chem. Phys. Rev. 2023, 4, 011305. [Google Scholar] [CrossRef]
- Guo, K.; Tang, Z.; Chou, X.; Pan, S.; Wan, C.; Xue, T.; Ding, L.; Wang, X.; Huang, J.; Zhang, F.; et al. Printable Organic Light-Emitting Diodes for next-Generation Visible Light Communications: A Review. Adv. Photonics Nexus 2023, 2, 044001. [Google Scholar] [CrossRef]
- Nayak, D.; Choudhary, R.B. A Survey of the Structure, Fabrication, and Characterization of Advanced Organic Light Emitting Diodes. Microelectron. Reliab. 2023, 144, 114959. [Google Scholar] [CrossRef]
- González, S.; Vescio, G.; Frieiro, J.L.; Hauser, A.; Linardi, F.; López-Vidrier, J.; Oszajca, M.; Hernández, S.; Cirera, A.; Garrido, B. Inkjet-Printed p-NiO/n-ZnO Heterojunction Diodes for Photodetection Applications. Adv. Mater. Interfaces 2023, 10, 2300035. [Google Scholar] [CrossRef]
- Muldoon, K.; Song, Y.; Ahmad, Z.; Chen, X.; Chang, M.-W. High Precision 3D Printing for Micro to Nano Scale Biomedical and Electronic Devices. Micromachines 2022, 13, 642. [Google Scholar] [CrossRef]
- Khonina, S.N.; Voronkov, G.S.; Grakhova, E.P.; Kazanskiy, N.L.; Kutluyarov, R.V.; Butt, M.A. Polymer Waveguide-Based Optical Sensors—Interest in Bio, Gas, Temperature, and Mechanical Sensing Applications. Coatings 2023, 13, 549. [Google Scholar] [CrossRef]
- Yin, L.; Lv, J.; Wang, J. Structural Innovations in Printed, Flexible, and Stretchable Electronics. Adv. Mater. Technol. 2020, 5, 2000694. [Google Scholar] [CrossRef]
- Lin, H.; Luo, Z.; Gu, T.; Kimerling, L.C.; Wada, K.; Agarwal, A.; Hu, J. Mid-Infrared Integrated Photonics on Silicon: A Perspective. Nanophotonics 2018, 7, 393–420. [Google Scholar] [CrossRef]
- Camposeo, A.; Persano, L.; Farsari, M.; Pisignano, D. Additive Manufacturing: Applications and Directions in Photonics and Optoelectronics. Adv. Opt. Mater. 2019, 7, 1800419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, E.-H.; Lee, S.G.; O, B.H.; Park, S.-G.; Kim, K.H.; Kang, J.K.; Choi, Y.W. Integration of Polymer-Based Optical Waveguide Arrays and Micro/Nano-Photonic Devices for Optical Printed Circuit Board (O-PCB) Application. In Proceedings of the Optoelectronic Integrated Circuits VII, San Jose, CA, USA, 25–27 January 2005; SPIE: Bellingham, WA, USA, 2005; Volume 5729, pp. 118–129. [Google Scholar]
- Alamán, J.; López-Valdeolivas, M.; Alicante, R.; Medel, F.J.; Silva-Treviño, J.; Peña, J.I.; Sánchez-Somolinos, C. Photoacid Catalyzed Organic–Inorganic Hybrid Inks for the Manufacturing of Inkjet-Printed Photonic Devices. J. Mater. Chem. C 2018, 6, 3882–3894. [Google Scholar] [CrossRef] [Green Version]
- Raut, N.C.; Al-Shamery, K. Inkjet Printing Metals on Flexible Materials for Plastic and Paper Electronics. J. Mater. Chem. C 2018, 6, 1618–1641. [Google Scholar] [CrossRef]
- Zangeneh-Nejad, F.; Fleury, R. Acoustic Analogues of High-Index Optical Waveguide Devices. Sci. Rep. 2018, 8, 10401. [Google Scholar] [CrossRef] [Green Version]
- Cennamo, N.; Saitta, L.; Tosto, C.; Arcadio, F.; Zeni, L.; Fragalá, M.E.; Cicala, G. Microstructured Surface Plasmon Resonance Sensor Based on Inkjet 3D Printing Using Photocurable Resins with Tailored Refractive Index. Polymers 2021, 13, 2518. [Google Scholar] [CrossRef]
- Sabah, F.A.; Razak, I.A.; Kabaa, E.A.; Zaini, M.F.; Omar, A.F. Characterization of Hybrid Organic/Inorganic Semiconductor Materials for Potential Light Emitting Applications. Opt. Mater. 2020, 107, 110117. [Google Scholar] [CrossRef]
- Biria, S.; Chen, F.-H.; Hosein, I.D. Enhanced Wide-Angle Energy Conversion Using Structure-Tunable Waveguide Arrays as Encapsulation Materials for Silicon Solar Cells. Phys. Status Solidi (a) 2019, 216, 1800716. [Google Scholar] [CrossRef]
- Dietrich, P.-I.; Blaicher, M.; Reuter, I.; Billah, M.; Hoose, T.; Hofmann, A.; Caer, C.; Dangel, R.; Offrein, B.; Troppenz, U.; et al. In Situ 3D Nanoprinting of Free-Form Coupling Elements for Hybrid Photonic Integration. Nat. Photonics 2018, 12, 241–247. [Google Scholar] [CrossRef] [Green Version]
- Bi, Z.M.; Wang, L. Advances in 3D Data Acquisition and Processing for Industrial Applications. Robot. Comput.-Integr. Manuf. 2010, 26, 403–413. [Google Scholar] [CrossRef]
- Wang, J.; Tao, B.; Gong, Z.; Yu, W.; Yin, Z. A Mobile Robotic 3-D Measurement Method Based on Point Clouds Alignment for Large-Scale Complex Surfaces. IEEE Trans. Instrum. Meas. 2021, 70, 7503011. [Google Scholar] [CrossRef]
- Makarenko, S.; Sorokin, D.I.; Ulanov, A.; Lvovsky, A. Aligning an Optical Interferometer with Beam Divergence Control and Continuous Action Space. In Proceedings of the 5th Conference on Robot Learning, PMLR, London, UK, 8–11 November 2021; pp. 918–927. [Google Scholar]
- Biria, S.; Wilhelm, T.S.; Mohseni, P.K.; Hosein, I.D. Direct Light-Writing of Nanoparticle-Based Metallo-Dielectric Optical Waveguide Arrays Over Silicon Solar Cells for Wide-Angle Light Collecting Modules. Adv. Opt. Mater. 2019, 7, 1900661. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Kim, T.J.; Park, H.G.; Le, V.L.; Nguyen, X.A.; Koo, D.; Lee, C.-H.; Cuong, D.D.; Hong, S.C.; Kim, Y.D. Temperature dependence of optical properties of monolayer WS2 by spectroscopic ellipsometry. Appl. Surf. Sci. 2020, 511, 145503. [Google Scholar] [CrossRef]
- Yang, M.; Chon, M.-W.; Kim, J.-H.; Lee, S.-H.; Jo, J.; Yeo, J.; Ko, S.H.; Choa, S.-H. Mechanical and Environmental Durability of Roll-to-Roll Printed Silver Nanoparticle Film Using a Rapid Laser Annealing Process for Flexible Electronics. Microelectron. Reliab. 2014, 54, 2871–2880. [Google Scholar] [CrossRef]
- Zhuldybina, M.; Ropagnol, X.; Blanchard, F. Towards In-Situ Quality Control of Conductive Printable Electronics: A Review of Possible Pathways. Flex. Print. Electron. 2021, 6, 043007. [Google Scholar] [CrossRef]
- Palavesam, N.; Marin, S.; Hemmetzberger, D.; Landesberger, C.; Bock, K.; Kutter, C. Roll-to-Roll Processing of Film Substrates for Hybrid Integrated Flexible Electronics. Flex. Print. Electron. 2018, 3, 014002. [Google Scholar] [CrossRef]
- Chen, Y.; Liang, T.; Chen, L.; Chen, Y.; Yang, B.-R.; Luo, Y.; Liu, G.-S. Self-assembly, alignment, and patterning of metal nanowires. Nanoscale Horiz. 2022, 7, 1299–1339. [Google Scholar] [CrossRef]
- Maize, K.; Mi, Y.; Cakmak, M.; Shakouri, A. Real-Time Metrology for Roll-To-Roll and Advanced Inline Manufacturing: A Review. Adv. Mater. Technol. 2023, 8, 2200173. [Google Scholar] [CrossRef]
- Fu, Y.; Downey, A.R.J.; Yuan, L.; Zhang, T.; Pratt, A.; Balogun, Y. Machine learning algorithms for defect detection in metal laser-based additive manufacturing: A review. J. Manuf. Process. 2022, 75, 693–710. [Google Scholar] [CrossRef]
- Abbel, R.; Galagan, Y.; Groen, P. Roll-to-Roll Fabrication of Solution Processed Electronics. Adv. Eng. Mater. 2018, 20, 1701190. [Google Scholar] [CrossRef] [Green Version]
- Gvishi, R.; Sokolov, I. 3D sol–gel printing and sol–gel bonding for fabrication of macro- and micro/nano-structured photonic devices. J. Sol-Gel Sci. Technol. 2020, 95, 635–648. [Google Scholar] [CrossRef]
- Peng, B.; Özdemir, Ş.K.; Lei, F.; Monifi, F.; Gianfreda, M.; Long, G.L.; Fan, S.; Nori, F.; Bender, C.M.; Yang, L. Parity–Time-Symmetric Whispering-Gallery Microcavities. Nat. Phys. 2014, 10, 394–398. [Google Scholar] [CrossRef] [Green Version]
- Chang, L.; Jiang, X.; Hua, S.; Yang, C.; Wen, J.; Jiang, L.; Li, G.; Wang, G.; Xiao, M. Parity–Time Symmetry and Variable Optical Isolation in Active–Passive-Coupled Microresonators. Nat. Photonics 2014, 8, 524–529. [Google Scholar] [CrossRef]
- Htwe, Y.Z.N.; Mariatti, M. Printed Graphene and Hybrid Conductive Inks for Flexible, Stretchable, and Wearable Electronics: Progress, Opportunities, and Challenges. J. Sci. Adv. Mater. Devices 2022, 7, 100435. [Google Scholar] [CrossRef]
- Khan, Y.; Ostfeld, A.E.; Lochner, C.M.; Pierre, A.; Arias, A.C. Monitoring of Vital Signs with Flexible and Wearable Medical Devices. Adv. Mater. 2016, 28, 4373–4395. [Google Scholar] [CrossRef]
- Bandodkar, A.J.; Wang, J. Non-Invasive Wearable Electrochemical Sensors: A Review. Trends Biotechnol. 2014, 32, 363–371. [Google Scholar] [CrossRef]
- Verboven, I.; Stryckers, J.; Mecnika, V.; Vandevenne, G.; Jose, M.; Deferme, W. Printing Smart Designs of Light Emitting Devices with Maintained Textile Properties. Materials 2018, 11, 290. [Google Scholar] [CrossRef] [Green Version]
- Fatima, S.; Haleem, A.; Bahl, S.; Javaid, M.; Mahla, S.K.; Singh, S. Exploring the Significant Applications of Internet of Things (IoT) with 3D Printing Using Advanced Materials in Medical Field. Mater. Today Proc. 2021, 45, 4844–4851. [Google Scholar] [CrossRef]
- Barandun, G.; Gonzalez-Macia, L.; Lee, H.S.; Dincer, C.; Güder, F. Challenges and Opportunities for Printed Electrical Gas Sensors. ACS Sens. 2022, 7, 2804–2822. [Google Scholar] [CrossRef]
- Phan, D.T.; Mondal, S.; Tran, L.H.; Thien, V.T.M.; Nguyen, H.V.; Nguyen, C.H.; Park, S.; Choi, J.; Oh, J. A Flexible, and Wireless LED Therapy Patch for Skin Wound Photomedicine with IoT-Connected Healthcare Application. Flex. Print. Electron. 2021, 6, 045002. [Google Scholar] [CrossRef]
- Kirchmeyer, S. The OE-A Roadmap for Organic and Printed Electronics: Creating a Guidepost to Complex Interlinked Technologies, Applications and Markets. Transl. Mater. Res. 2016, 3, 010301. [Google Scholar] [CrossRef] [Green Version]
- Ahmadraji, T.; Gonzalez-Macia, L.; Ritvonen, T.; Willert, A.; Ylimaula, S.; Donaghy, D.; Tuurala, S.; Suhonen, M.; Smart, D.; Morrin, A.; et al. Biomedical Diagnostics Enabled by Integrated Organic and Printed Electronics. Anal. Chem. 2017, 89, 7447–7454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagamine, K.; Nomura, A.; Ichimura, Y.; Izawa, R.; Sasaki, S.; Furusawa, H.; Matsui, H. Printed Organic Transistor-Based Biosensors for Non-Invasive Sweat Analysis. Anal. Sci. 2020, 36, 291–302. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.-Y.; Soin, N. Recent Progress in Printed Physical Sensing Electronics for Wearable Health-Monitoring Devices: A Review. IEEE Sens. J. 2022, 22, 3844–3859. [Google Scholar] [CrossRef]
- Ma, W.C.; Yeong, W.Y. 3D Printing and Electronics: Future Trend in Smart Drug Delivery Devices. Mater. Today Proc. 2022, 70, 162–167. [Google Scholar] [CrossRef]
- Beg, S.; Almalki, W.H.; Malik, A.; Farhan, M.; Aatif, M.; Rahman, Z.; Alruwaili, N.K.; Alrobaian, M.; Tarique, M.; Rahman, M. 3D Printing for Drug Delivery and Biomedical Applications. Drug Discov. Today 2020, 25, 1668–1681. [Google Scholar] [CrossRef]
- Bazaz, S.R.; Rouhi, O.; Raoufi, M.A.; Ejeian, F.; Asadnia, M.; Jin, D.; Warkiani, M.E. 3D Printing of Inertial Microfluidic Devices. Sci. Rep. 2020, 10, 5929. [Google Scholar] [CrossRef] [Green Version]
- Raza, A.; Hayat, U.; Rasheed, T.; Bilal, M.; Iqbal, H.M.N. ‘Smart’ Materials-Based near-Infrared Light-Responsive Drug Delivery Systems for Cancer Treatment: A Review. J. Mater. Res. Technol. 2019, 8, 1497–1509. [Google Scholar] [CrossRef]
- Yang, H.; Liang, N.; Wang, J.; Chen, R.; Tian, R.; Xin, X.; Zhai, T.; Hou, J. Transfer-Printing a Surface-Truncated Photonic Crystal for Multifunction-Integrated Photovoltaic Window. Nano Energy 2023, 112, 108472. [Google Scholar] [CrossRef]
- Brunetti, F.; Operamolla, A.; Castro-Hermosa, S.; Lucarelli, G.; Manca, V.; Farinola, G.M.; Brown, T.M. Printed Solar Cells and Energy Storage Devices on Paper Substrates. Adv. Funct. Mater. 2019, 29, 1806798. [Google Scholar] [CrossRef] [Green Version]
- Razza, S.; Castro-Hermosa, S.; Di Carlo, A.; Brown, T.M. Research Update: Large-Area Deposition, Coating, Printing, and Processing Techniques for the Upscaling of Perovskite Solar Cell Technology. APL Mater. 2016, 4, 091508. [Google Scholar] [CrossRef] [Green Version]
- Gaikwad, A.M.; Arias, A.C.; Steingart, D.A. Recent Progress on Printed Flexible Batteries: Mechanical Challenges, Printing Technologies, and Future Prospects. Energy Technol. 2015, 3, 305–328. [Google Scholar] [CrossRef]
- Lechêne, B.P.; Cowell, M.; Pierre, A.; Evans, J.W.; Wright, P.K.; Arias, A.C. Organic Solar Cells and Fully Printed Super-Capacitors Optimized for Indoor Light Energy Harvesting. Nano Energy 2016, 26, 631–640. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.A.; Jevtics, D.; Guilhabert, B.; Dawson, M.D.; Strain, M.J. Hybrid Integration of Chipscale Photonic Devices Using Accurate Transfer Printing Methods. Appl. Phys. Rev. 2022, 9, 041317. [Google Scholar] [CrossRef]
- Jakobsen, P.; Ferruit, P.; Alves de Oliveira, C.; Arribas, S.; Bagnasco, G.; Barho, R.; Beck, T.L.; Birkmann, S.; Böker, T.; Bunker, A.J.; et al. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope—I. Overview of the Instrument and Its Capabilities. Astron. Astrophys. 2022, 661, A80. [Google Scholar] [CrossRef]
- Ouellette, O.; Lesage-Landry, A.; Scheffel, B.; Hoogland, S.; de Arquer, F.P.G.; Sargent, E.H. Spatial Collection in Colloidal Quantum Dot Solar Cells. Adv. Funct. Mater. 2020, 30, 1908200. [Google Scholar] [CrossRef]
- Herbert, K.M.; Fowler, H.E.; McCracken, J.M.; Schlafmann, K.R.; Koch, J.A.; White, T.J. Synthesis and Alignment of Liquid Crystalline Elastomers. Nat. Rev. Mater. 2022, 7, 23–38. [Google Scholar] [CrossRef]
- Li, H. 34.3: Invited Paper: Printing Pixel Circuits on Light Emitting Diode Array for AMLED Displays. SID Symp. Dig. Tech. Pap. 2019, 50, 376–378. [Google Scholar] [CrossRef]
- Gulses, A.A.; Rai, S.; Padiyar, J.; Crowley, S.; Martin, A.; Islas, G.; Kurtz, R.M.; Forrester, T.; Guimary, D. Laser Beam Shaping with Computer-Generated Holograms for Fiducial Marking. In Proceedings of the Laser Beam Shaping XIX, Diego, CA, USA, 11–15 August 2019; SPIE: Bellingham, WA, USA, 2019; Volume 11107, pp. 92–98. [Google Scholar]
- Alyami, W.; Kyme, A.; Bourne, R. Histological Validation of MRI: A Review of Challenges in Registration of Imaging and Whole-Mount Histopathology. J. Magn. Reson. Imaging 2022, 55, 11–22. [Google Scholar] [CrossRef]
- Li, F.; Jen, A.K.-Y. Interface Engineering in Solution-Processed Thin-Film Solar Cells. Acc. Mater. Res. 2022, 3, 272–282. [Google Scholar] [CrossRef]
- Sun, Y.; Jiang, Y.; Sun, X.W.; Zhang, S.; Chen, S. Beyond OLED: Efficient Quantum Dot Light-Emitting Diodes for Display and Lighting Application. Chem. Rec. 2019, 19, 1729–1752. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.Y.; Kim, S. Nanowires for 2D Material-Based Photonic and Optoelectronic Devices. Nanophotonics 2022, 11, 2571–2582. [Google Scholar] [CrossRef]
- Lall, P.; Goyal, K.; Schulze, K.; Hill, C. Print-Consistency and Process-Interaction for Inkjet-Printed Copper on Flexible Substrate. In Proceedings of the ASME 2021 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, Virtual, Online, 26–28 October 2021. [Google Scholar]
- Chakravarty, S.; Teng, M.; Safian, R.; Zhuang, L. Hybrid Material Integration in Silicon Photonic Integrated Circuits. J. Semicond. 2021, 42, 041303. [Google Scholar] [CrossRef]
- Li, Y.; Xie, H.; Lim, E.L.; Hagfeldt, A.; Bi, D. Recent Progress of Critical Interface Engineering for Highly Efficient and Stable Perovskite Solar Cells. Adv. Energy Mater. 2022, 12, 2102730. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, T.; Ye, Z.; Gao, S.; Han, M.; Zeng, X.; Zhang, P. Plasma-Assisted Self-Assembled Monolayers for Reducing Thermal Resistance across Graphite Films/Polymer Interfaces. Compos. Sci. Technol. 2022, 229, 109690. [Google Scholar] [CrossRef]
- Sánchez-Bodón, J.; del Olmo, J.A.; Alonso, J.M.; Moreno-Benítez, I.; Vilas-Vilela, J.L.; Pérez-Álvarez, L. Bioactive Coatings on Titanium: A Review on Hydroxylation, Self-Assembled Monolayers (SAMs) and Surface Modification Strategies. Polymers 2022, 14, 165. [Google Scholar] [CrossRef]
- Szostak, R.; Gonçalves, A.d.S.; de Freitas, J.N.; Marchezi, P.E.; de Araújo, F.L.; Tolentino, H.C.N.; Toney, M.F.; Marques, F.d.C.; Nogueira, A.F. In Situ and Operando Characterizations of Metal Halide Perovskite and Solar Cells: Insights from Lab-Sized Devices to Upscaling Processes. Chem. Rev. 2023, 123, 3160–3236. [Google Scholar] [CrossRef]
- Liu, H.; Yu, M.; Lee, C.; Yu, X.; Li, Y.; Zhu, Z.; Chueh, C.; Li, Z.; Jen, A.K. Technical Challenges and Perspectives for the Commercialization of Solution-Processable Solar Cells. Adv. Mater. Technol. 2021, 6, 2000960. [Google Scholar] [CrossRef]
- Xu, Z.; Zhuang, Q.; Zhou, Y.; Lu, S.; Wang, X.; Cai, W.; Zang, Z. Functional Layers of Inverted Flexible Perovskite Solar Cells and Effective Technologies for Device Commercialization. Small Struct. 2023, 4, 2200338. [Google Scholar] [CrossRef]
- Kim, J.I.; Zeng, Q.; Park, S.; Lee, H.; Park, J.; Kim, T.; Lee, T. Strategies to Extend the Lifetime of Perovskite Downconversion Films for Display Applications. Adv. Mater. 2022, 2209784. [Google Scholar] [CrossRef]
- Lu, Q.; Yang, Z.; Meng, X.; Yue, Y.; Ahmad, M.A.; Zhang, W.; Zhang, S.; Zhang, Y.; Liu, Z.; Chen, W. A Review on Encapsulation Technology from Organic Light Emitting Diodes to Organic and Perovskite Solar Cells. Adv. Funct. Mater. 2021, 31, 2100151. [Google Scholar] [CrossRef]
- Tong, C. Fundamentals and Design Guides for Printed Flexible Electronics. In Advanced Materials for Printed Flexible Electronics; Tong, C., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–51. [Google Scholar]
- Choi, J.-M.; Han, J.; Yoon, J.; Kim, S.; Jeon, I.; Maruyama, S. Overview and Outlook on Graphene and Carbon Nanotubes in Perovskite Photovoltaics from Single-Junction to Tandem Applications. Adv. Funct. Mater. 2022, 32, 2204594. [Google Scholar] [CrossRef]
- Schröder, H.; Lewoczko-Adamczyk, W.; Weber, D. Enabling Photonic System Integration by Applying Glass Based Microelectronic Packaging Approaches. EPJ Web Conf. 2022, 266, 03020. [Google Scholar] [CrossRef]
- Rafique, A.; Ferreira, I.; Abbas, G.; Baptista, A.C. Recent Advances and Challenges toward Application of Fibers and Textiles in Integrated Photovoltaic Energy Storage Devices. Nano-Micro Lett. 2023, 15, 40. [Google Scholar] [CrossRef]
- Wen, F.; He, T.; Liu, H.; Chen, H.-Y.; Zhang, T.; Lee, C. Advances in Chemical Sensing Technology for Enabling the Next-Generation Self-Sustainable Integrated Wearable System in the IoT Era. Nano Energy 2020, 78, 105155. [Google Scholar] [CrossRef]
- Sutherland, L.J.; Weerasinghe, H.C.; Simon, G.P. A Review on Emerging Barrier Materials and Encapsulation Strategies for Flexible Perovskite and Organic Photovoltaics. Adv. Energy Mater. 2021, 11, 2101383. [Google Scholar] [CrossRef]
- Junio, R.F.P.; da Silveira, P.H.P.M.; Neuba, L.d.M.; Monteiro, S.N.; Nascimento, L.F.C. Development and Applications of 3D Printing-Processed Auxetic Structures for High-Velocity Impact Protection: A Review. Eng 2023, 4, 903–940. [Google Scholar] [CrossRef]
- Zong, W.; Ouyang, Y.; Miao, Y.-E.; Liu, T.; Lai, F. Recent Advances and Perspectives of 3D Printed Micro-Supercapacitors: From Design to Smart Integrated Devices. Chem. Commun. 2022, 58, 2075–2095. [Google Scholar] [CrossRef] [PubMed]
- Xin, C.; Li, Z.; Hao, L.; Li, Y. A Comprehensive Review on Additive Manufacturing of Glass: Recent Progress and Future Outlook. Mater. Des. 2023, 227, 111736. [Google Scholar] [CrossRef]
Materials | Advantages | Limitations | References |
---|---|---|---|
Polymers |
|
| [58,59] |
Inorganic |
|
| [60] |
Hybrid |
|
| [61] |
Nanomaterials |
|
| [62] |
Printing Technique | Scalability | Advantages | Applications | Printing Speed | Line Width/Thickness | Limitations | References |
---|---|---|---|---|---|---|---|
Inkjet Printing | Scalable | Compatible with various materials, control of droplet size with precision. | Various | Moderate to High | 30–50 µm/ ~1 µm | Clogging, ink formulation challenges, and issues with substrate compatibility. | [85] |
Aerosol Printing | Scalable | Scalable and compatible with various materials in high-speed deposition requirements. | Large-area deposition | Low | 20–40 µm/ ~30 nm | Challenges in achieving uniform deposition thickness and precise control of droplet size. | [86] |
Gravure Printing | High | Good reproducibility and ink transfer efficiency. Precise deposition with high speed. | Mass production | High | 10–50 µm/ ~1 µm | Limited flexibility due to fixed pattern. Expensive plate fabrication mechanism. | [87] |
Offset Printing | High | Excellent color reproduction and applicable to a variety of substrates. | Commercial printing | High | 50–170 µm/ ~2 µm | Complex setup and expensive, inability to quickly make adjustments. | [77] |
Flexographic Printing | High | High ink transfer efficiency, fast printing speeds, and appropriate for many materials and substrates. | Packaging, large area | High | 45–100 µm/ <1 µm | Challenges in attaining high resolution, limited ink transfer consistency on irregular surfaces. | [88] |
Screen Printing | Moderate | Simple and Versatile. High throughput. Can be used for a variety of substrates. Low cost. | Displays, sensors | Moderate | 30–50 µm/ 5–100 µm | Limited resolution due to mesh size constraints. Restricted to mostly thick film depositions. | [81] |
Pad Printing | Moderate | Versatile and able to print on irregular surfaces. | Three-dimensional objects | Moderate | 100–150 µm/ 0.1–0.15 mm | Challenges in consistent ink transfer. | [83] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Amri, A.M. Recent Progress in Printed Photonic Devices: A Brief Review of Materials, Devices, and Applications. Polymers 2023, 15, 3234. https://doi.org/10.3390/polym15153234
Al-Amri AM. Recent Progress in Printed Photonic Devices: A Brief Review of Materials, Devices, and Applications. Polymers. 2023; 15(15):3234. https://doi.org/10.3390/polym15153234
Chicago/Turabian StyleAl-Amri, Amal M. 2023. "Recent Progress in Printed Photonic Devices: A Brief Review of Materials, Devices, and Applications" Polymers 15, no. 15: 3234. https://doi.org/10.3390/polym15153234
APA StyleAl-Amri, A. M. (2023). Recent Progress in Printed Photonic Devices: A Brief Review of Materials, Devices, and Applications. Polymers, 15(15), 3234. https://doi.org/10.3390/polym15153234