Particle Shedding from Cotton and Cotton-Polyester Fabrics in the Dry State and in Washes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Washing Process
2.3. Methods
3. Results
3.1. Structural Parameters
3.2. Physicochemical Analysis of Samples with FTIR-ATR
3.3. Particle Shedding from Fabrics in Dry State
3.4. Particle Shedding from Fabrics in Wash Cycles
3.5. MVA-Similarities and Disimilarities of Observed Systems in Dry State and Washes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sigaard, A.S.; Laitala, K. Natural and Sustainable? Consumers’ Textile Fiber Preferences. Fibers 2023, 11, 12. [Google Scholar] [CrossRef]
- Malinar, R.; Flinčec Grgac, S.; Katović, D. Textile particle generation: Test method for nonwovens modified for use on woven materials. Text. Res. J. 2020, 90, 19–20. [Google Scholar] [CrossRef]
- Sinner, H. Über das Waschen mit Haushaltswaschmaschinen, 2nd ed.; Auflage Haus und Heim Verlag: Hamburg, Germany, 1960; pp. 9–10. [Google Scholar]
- Palme, A.; Idström, A.; Nordstierna, L.; Brelid, H. Chemical and ultrastructural changes in cotton cellulose induced by laundering and textile use. Cellulose 2014, 21, 4681–4691. [Google Scholar] [CrossRef] [Green Version]
- Fijan, S.; Šostar Turk, S.; Neral, B.; Pušić, T. The Influence of Industrial Laundering of Hospital Textiles on the Properties of Cotton Fabrics. Text. Res. J. 2007, 77, 247–255. [Google Scholar] [CrossRef]
- Gotoh, K.; Harayama, K.; Handa, K. Combination effect of ultrasound and shake as a mechanical action for textile cleaning. Ultrason. Sonochemistry 2015, 22, 412–421. [Google Scholar] [CrossRef]
- Rogina-Car, B.; Pušić, T.; Dekanić, T. Impact of washing and sterilization on properties of fabrics used for medical applications. Indian J. Fibre Text. Res. 2016, 41, 426–431. [Google Scholar]
- Buisson, Y.L.; Rajasekaran, K.; French, A.D.; Conrad, D.C.; Roy, P.S. Qualitative and Quantitative Evaluation of Cotton Fabric Damage by Tumble Drying. Text. Res. J. 2000, 70, 739–743. [Google Scholar] [CrossRef]
- Hazlehurst, A.; Tiffin, L.; Sumner, M.; Taylor, M. Quantification of microfibre release from textiles during domestic laundering. Environ. Sci. Pollut. Res. 2023, 30, 43932–43949. [Google Scholar] [CrossRef]
- Tiffin, L.; Hazlehurst, A.; Sumner, M.; Taylor, M. Reliable quantification of microplastic release from the domestic laundry of textile fabrics. J. Text. Inst. 2022, 113, 558–566. [Google Scholar] [CrossRef]
- Mitic, J.; Amin, G.; Kodric, M.; Šmelcerović, M.; Đorđević, D. Polyester fibres structure modification using some organic solutions. Tekstil 2016, 65, 196–200. [Google Scholar]
- Wang, S.; Salmon, S. Progress toward Circularity of Polyester and Cotton Textiles. Sustain. Chem. 2022, 3, 376–403. [Google Scholar] [CrossRef]
- East, A.J. The structure of polyester fibres. In Handbook of Textile Fibre Structure: Volume 1: Fundamentals and Manufactured Polymer Fibres; Eichorn, S.J., Hearl, J.W.S., Jaffe, M.K., Eds.; T. Woodhead Publishing Limited: Oxford, UK, 2009; Volume 185, pp. 181–225. [Google Scholar]
- Kurz, J. Laundering in the prevention of Skin Infections. In Textiles and the Skin; Elsner, P., Hatch, K.K., Eds.; Karger: Basel, Switzerland, 2003; Volume 5, pp. 64–81. [Google Scholar]
- Palacios-Mateo, C.; van der Meer, Y.; Seide, G. Analysis of the polyester clothing value chain to identify key intervention points for sustainability. Environ. Sci. Eur. 2021, 33, 1–25. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, W.-C.; Li, F.-X.; Yu, J.-Y. Swelling and dissolution of cellulose in NaOH aqueous solvent systems. Cellul. Chem. Technol. 2013, 47, 671–679. [Google Scholar]
- Toshikj, E.; Jordanov, I.; Demboski, G.; Mangovska, B. Influence of Multiple Laundering on Cotton Shirts Properties. Tekst. Ve Konfeksiyon 2016, 26, 393–399. [Google Scholar]
- Özkan, İ.; Gündoğdu, S. Investigation on the microfiber release under controlled washings from the knitted fabrics produced by recycled and virgin polyester yarns. J. Text. Inst. 2021, 112, 264–272. [Google Scholar] [CrossRef]
- Volgare, M.; Avolio, R.; Castaldo, R.; Errico, M.E.; El Khiar, H.; Gentile, G.; Sinjur, A.; Susnik, D.; Znidarsic, A.; Cocca, M. Microfiber Contamination in Potable Water: Detection and Mitigation Using a Filtering Device. Microplastics 2022, 1, 322–333. [Google Scholar] [CrossRef]
- Mariano, S.; Tacconi, S.; Fidaleo, M.; Rossi, M.; Dini, L. Micro and Nanoplastics Identification: Classic Methods and Innovative Detection Techniques. Front. Toxicol. 2021, 3, 636640. [Google Scholar] [CrossRef]
- Magnusson, K.; Eliasson, K.; Fråne, A.; Haikonen, K.; Hultén, J.; Olshammar, M.; Stadmark, J.; Voisin, A. Swedish Sources and Pathways for Microplastics to the Marine Environment—Report C 183; IVL Swedish Environmental Research Institute Ltd.: Stockholm, Sweden, 2016. [Google Scholar]
- Lim, S.J.; Park, Y.-K.; Kim, H.; Kwon, J.; Moon, H.M.; Lee, Y.; Watanabe, A.; Teramae, N.; Ohtani, H.; Kim, Y.-M. Selective solvent extraction and quantification of synthetic microfibers in textile laundry wastewater using pyrolysis-gas chromatography/mass spectrometry. Chem. Eng. J. 2022, 434, 134653. [Google Scholar] [CrossRef]
- Hendrickson, E.; Minor, E.C.; Schreiner, K. Microplastic Abundance and Composition in Western Lake Superior as Determined via Microscopy, Pyr-GC/MS, and FTIR. Environ. Sci. Technol. 2018, 52, 1787–1796. [Google Scholar] [CrossRef]
- Piribauer, B.; Laminger, T.; Ipsmiller, W.; Koch, D.; Bartl, A. Assessment of Microplastics in the Environment—Fibres: The Disregarded Twin? Detritus 2020, 9, 201–212. [Google Scholar]
- Committee for Risk Assessment and Committee for Socio-economic Analysis. Background Document on Intentionally Added Microplastics; ECHA: Helsinki, Finland, 2020; p. 18. [Google Scholar]
- Šaravanja, A.; Pušić, T.; Dekanić, T. Microplastics in Wastewater by Washing Polyester Fabrics. Materials 2022, 15, 2683. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Sharma, N. Mechanistic implications of plastic degradation. Polym. Degrad. Stab. 2008, 93, 561–584. [Google Scholar] [CrossRef]
- Silva, R.R.A.; Marques, C.S.; Arruda, T.R.; Teixeira, S.C.; de Oliveira, T.V. Biodegradation of Polymers: Stages, Measurement, Standards and Prospects. Macromolecules 2023, 3, 371–399. [Google Scholar] [CrossRef]
- Hernandez, E.; Nowack, B.; Mitrano, D.M. Polyester Textiles as a Source of Microplastics from Households: A Mechanistic Study to Understand Microfiber Release During Washing. Environ. Sci. Technol. 2017, 51, 7036–7046. [Google Scholar] [CrossRef]
- Choi, S.; Kwon, M.; Park, M.J.; Kim, J. Analysis of Microplastics Released from Plain Woven Classified by Yarn Types during Washing and Drying. Polymers 2021, 13, 2988. [Google Scholar] [CrossRef]
- Roth, J.; Zerger, B.; De Geeter, D.; Benavides, J.G.; Roudier, S. Best Available Techniques (BAT) Reference Document for the Textile Industry; Publications Office of the European Union: Luxembourg, 2023; p. 164. [Google Scholar]
- Raja Balasaraswathi, S.; Rathinamoorthy, R. Effect of fabric properties on microfiber shedding from synthetic textiles. J. Text. Inst. 2021, 113, 789–809. [Google Scholar] [CrossRef]
- Zhang, Y.; Lykaki, M.; Alrajoula, M.T.; Markiewicz, M.; Kraas, C.S.; Kolbe Klinkhammer, K.; Rabe, M.; Klauer, R.; Bendtd, E.; Stolte, S. Microplastics from textile origin—Emission and reduction measures. Green Chem. 2021, 23, 5247–5271. [Google Scholar] [CrossRef]
- Gaylarde, C.; Baptista-Neto, J.A.; da Fonseca, E.M. Plastic microfibre pollution: How important is clothes’ laundering? Heliyon 2021, 25, e07105. [Google Scholar] [CrossRef]
- Carney Almroth, B.M.; Åström, L.; Roslund, S.; Petersson, H.; Johansson, M.; Persson, N.K. Quantifying shedding of synthetic fibers from textiles; a source of microplastics released into the environment. Environ. Sci. Pollut. Res. 2018, 25, 1191–1199. [Google Scholar] [CrossRef] [Green Version]
- Abreu-Silva, J.; Ribeirinho-Soares, S.; Oliveira-Inocêncio, I.; Pedrosa, M.; Silva, A.M.T.; Nunes, C.O.; Manaia, C.M. Performance of polycarbonate, cellulose nitrate and polyethersulfone filtering membranes for culture-independent microbiota analysis of clean waters. J. Environ. Chem. Eng. 2023, 11, 109132. [Google Scholar] [CrossRef]
- Sillanpää, M.; Sainio, P. Release of polyester and cotton fibers from textiles in machine washings. Environ. Sci. Pollut. Res. 2017, 24, 19313–19321. [Google Scholar] [CrossRef]
- Cotton, L.; Hayward, A.S.; Lant, N.J.; Blackburn, R.S. Improved garment longevity and reduced microfibre release are important sustainability benefits of laundering in colder and quicker washing machine cycles. Dyes Pigment. 2020, 177, 108120. [Google Scholar] [CrossRef]
- Cai, H.; Chen, M.; Chen, Q.; Du, H.; Liu, J.; Shi, H. Microplastic quantification affected by structure and pore size of filters. Chemosphere 2020, 257, 127198. [Google Scholar] [CrossRef]
- Shen, M.; Hu, T.; Huang, W.; Song, B.; Zeng, G.; Zhang, Y. Removal of microplastics from wastewater with aluminosilicate filter media and their surfactant-modified products: Performance, mechanism and utilization. Chem. Eng. J. 2021, 421, 129918. Available online: https://www.sciencedirect.com/science/article/pii/S1385894721015023 (accessed on 15 May 2023).
- Zupan, J. Kemometrija in Obdelava Experimentalnih Podatkov; Inštitut Nove revije, Zavod za humanistiko and National Institute of Chemistry: Ljubljana, Slovenia, 2009; pp. 154–167. [Google Scholar]
- Maiken, U.; Johanna, M.H.; Shari, L.F.; Barbara, H.S. Degradation patterns of natural and synthetic textiles on a soil surface during summer and winter seasons studied using ATR-FTIR spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 185, 69–76. [Google Scholar]
- Physical_and_Theoretical_Chemistry_Textbook_Maps. Available online: https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Spectroscopy/Vibrational_Spectroscopy/Infrared_Spectroscopy/How_an_FTIR_Spectrometer_Operates (accessed on 15 June 2023).
- Gürkök, S. Microbial Enzymes in Detergents: A Review. Int. J. Sci. Eng. Res. 2019, 10, 75–81. [Google Scholar]
- Soljačić, I.; Pušić, T. Njega Tekstila, Sveučilište u Zagrebu Tekstilno-tehnološki fakultet; University of Zagreb: Zagreb, Croatia, 2005; p. 123. [Google Scholar]
- Smulders, E.P. Smulders; Wiley-VCH: Weincheim, Germany, 2002; p. 165. [Google Scholar]
- Gore, A.; Venkataraman, A. Identification of Polyester/Cellulosic Blends Using FT-IR Spectrometer. Indian J. Fibre Text. Res. 1998, 23, 165–169. [Google Scholar]
- Sangeetha, V.H.; Varghese, T.O.; Nayak, S.K. Isolation and characterisation of nanofibrillated cellulose from waste cotton: Effects on thermo-mechanical properties of polylactic acid/MA-g-SEBS blends. Iran. Polym. J. 2019, 28, 673–683. [Google Scholar] [CrossRef]
- Jönsson, C.; Levenstam Arturin, O.; Hanning, A.-C.; Landin, R.; Holmström, E.; Roos, S. Microplastics Shedding from Textiles—Developing Analytical Method for Measurement of Shed Material Representing Release during Domestic Washing. Sustainability 2018, 10, 2457. [Google Scholar] [CrossRef] [Green Version]
- Nayak, R.; Ratnapandian, S. Care and Maintenance of Textile Products Including Apparel and Protective Clothing; CRC Press: Boca Raton, FL, USA, 2018; p. 54. [Google Scholar]
- Bishop, P.D. Physical and chemical effects of domestic laundering processes. In Chemistry of the Textiles Industry; Carr, C.M., Ed.; Springer: Dordrecht, The Netherlands, 1995; pp. 125–172. [Google Scholar]
- Čurlin, M.; Pušić, T.; Vojnović, B.; Dimitrov, N. Particle Characterization of Washing Process Effluents by Laser Diffraction Technique. Materials 2021, 14, 7781. [Google Scholar] [CrossRef]
Composition | Percentage |
---|---|
ABS-Na (C-12 chain) | 0.425 |
Nonionic surfactant (C13/15 7EO or C12/14 7EO) | 6.0 |
Sodium citrate dihydrate | 5.0 |
Hydroxyethanediphosporic acid Na salt (HEDP) | 1.0 |
Metasilicate anhydrous | 42.3 |
Polymer (polymaleic acid) | 2.0 |
Foam inhibitor (phosphoric acid ester) | 3.0 |
Sodium carbonate | 39.5 |
Fluorescent whitening agent | 0.3 |
Water | 0.475 |
load ratio | 1:17 |
agitation during heating, washing and rinsing | normal |
washing | |
liquor ratio | 1:4 |
detergent additive | 4 g/L detergent 2 g/L PAA |
temperature | 75 ± 2 °C |
time | 20 min |
cool down | yes |
drain | 1 min |
interspin | No |
rinse 1 | |
liquor ratio | 1:5 |
time | 3 min |
drain | 1 min |
interspin | 1 min |
rinse 2 | |
liquor ratio | 1:5 |
time | 3 min |
drain | 1 min |
interspin | 1 min |
rinse 3 | |
liquor ratio | 1:5 |
time | 3 min |
drain | 1 min |
final extraction | 6 min |
residual moisture | 35–40% |
Designation | Sample |
---|---|
CO-0w | Cotton fabric before washing |
CO-3w | Cotton fabric after 3 washing cycles |
CO-10w | Cotton fabric after 10 washing cycles |
CO-50w | Cotton fabric after 50 washing cycles |
CO/PES-0w | Cotton-polyester fabric after 3 washing cycles |
CO/PES-3w | Cotton-polyester fabric after 10 washing cycles |
CO/PES-10w | Cotton-polyester fabric after 50 washing cycles |
CO/PES-50w | Cotton-polyester fabric after 3 washing cycles |
Sample | Thickness (mm) | CV (%) |
---|---|---|
CO-0w | 0.440 | 2.83 |
CO-3w | 0.489 | 6.35 |
CO-10w | 0.516 | 6.66 |
CO-50w | 0.553 | 8.61 |
CO/PES-0w | 0.384 | 2.20 |
CO/PES-3w | 0.443 | 1.52 |
CO/PES-10w | 0.443 | 1.52 |
CO/PES-50w | 0.461 | 2.97 |
Samples | F (N) | Ɛ (%) | |
---|---|---|---|
CO-0w | weft | 483.8 | 6.46 |
warp | 1028.8 | 8.94 | |
CO-3w | weft | 501.8 | 6.82 |
warp | 706.0 | 15.16 | |
CO-10w | weft | 582.2 | 7.84 |
warp | 729.8 | 18.00 | |
CO-50w | weft | 518.8 | 8.42 |
warp | 605.0 | 20.14 | |
CO/PES-0w | weft | 480.2 | 14.64 |
warp | 1074.6 | 16.85 | |
CO/PES-3w | weft | 541.6 | 14.25 |
warp | 1002.8 | 21.01 | |
CO/PES-10w | weft | 511.8 | 14.05 |
warp | 983.8 | 22.20 | |
CO/PES-50w | weft | 442.6 | 13.10 |
warp | 741.6 | 22.60 |
Ut (%) | ||||||
---|---|---|---|---|---|---|
CO | CO/PES | |||||
3w | 10w | 50w | 3w | 10w | 50w | |
weft | −3.721 | −20.339 | −7.234 | −12.786 | −6.581 | 7.830 |
warp | 31.376 | 29.063 | 41.194 | 6.6816 | 8.450 | 30.988 |
Number of Released Particles | |||||||
---|---|---|---|---|---|---|---|
Fabric | Cycles | 0.3–0.5 µm | 0.5–1 µm | 1–5 µm | 5–10 µm | 10–25 µm | ≥25 µm |
CO | 3w | 1,972,940.2 | 1,642,870.4 | 808,332.4 | 16,146.0 | 3305.8 | 745.8 |
10w | 2,782,562.8 | 2,133,212.3 | 1,030,349.3 | 28,086.5 | 4983.0 | 628.8 | |
50w | 4,347,945.4 | 3,452,533.2 | 1,655,430.8 | 65,939.8 | 12,165.2 | 744.8 | |
CO/PES | 3w | 51,192.0 | 28,188.6 | 12,296.4 | 347.0 | 120.6 | 80.4 |
10w | 45,924.0 | 20,549.2 | 7887.8 | 233.0 | 82.0 | 47.4 | |
50w | 63,962.8 | 33,833.4 | 13,122.0 | 428.8 | 116.2 | 60.4 |
Washing Effluent | |||
---|---|---|---|
Parameter | 3w | 10w | 50w |
pH | 9.94 | 9.99 | 9.89 |
Conductivity (µS/cm) | 1859 | 1927 | 1782 |
TSS (mg/L) | 117 | 77 | 81 |
TS (mg/L) | 3394 | 3452 | 3298 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pušić, T.; Vojnović, B.; Flinčec Grgac, S.; Čurlin, M.; Malinar, R. Particle Shedding from Cotton and Cotton-Polyester Fabrics in the Dry State and in Washes. Polymers 2023, 15, 3201. https://doi.org/10.3390/polym15153201
Pušić T, Vojnović B, Flinčec Grgac S, Čurlin M, Malinar R. Particle Shedding from Cotton and Cotton-Polyester Fabrics in the Dry State and in Washes. Polymers. 2023; 15(15):3201. https://doi.org/10.3390/polym15153201
Chicago/Turabian StylePušić, Tanja, Branka Vojnović, Sandra Flinčec Grgac, Mirjana Čurlin, and Rajna Malinar. 2023. "Particle Shedding from Cotton and Cotton-Polyester Fabrics in the Dry State and in Washes" Polymers 15, no. 15: 3201. https://doi.org/10.3390/polym15153201
APA StylePušić, T., Vojnović, B., Flinčec Grgac, S., Čurlin, M., & Malinar, R. (2023). Particle Shedding from Cotton and Cotton-Polyester Fabrics in the Dry State and in Washes. Polymers, 15(15), 3201. https://doi.org/10.3390/polym15153201