Preparation and Characterization of Body-Temperature-Responsive Thermoset Shape Memory Polyurethane for Medical Applications
Abstract
:1. Introduction
2. Experimental Part
2.1. Materials
2.2. Test Instruments
2.3. Preparation of Samples
2.4. Material Characterization
3. Results and Discussion
3.1. Influence of Different Molecular Weights
3.2. Influence of the Crosslinking Density
3.3. Shape Memory Effect Display and Mechanism Explanation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, L.; Zhang, F.; Liu, Y.; Leng, J. Shape memory polymer fibers: Materials, structures, and applications. Adv. Fiber Mater. 2022, 4, 5–23. [Google Scholar] [CrossRef]
- Wendels, S.; Avérous, L. Biobased polyurethanes for biomedical applications. Bioact. Mater. 2021, 6, 1083–1106. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Huang, Z.; Liu, L.; Wang, W.; Leng, J.; Liu, Y. Porous bone tissue scaffold concept based on shape memory PLA/Fe3O4. Compos. Sci. Technol. 2021, 203, 108563. [Google Scholar] [CrossRef]
- Ramezani, M.; Monroe, M.B.B. Biostable segmented thermoplastic polyurethane shape memory polymers for smart biomedical applications. ACS Appl. Polym. Mater. 2022, 4, 1956–1965. [Google Scholar] [CrossRef]
- Xu, Z.; Wei, D.-W.; Bao, R.-Y.; Wang, Y.; Ke, K.; Yang, M.-B.; Yang, W. Self-sensing actuators based on a stiffness variable reversible shape memory polymer enabled by a phase change material. ACS Appl. Mater. Interfaces 2022, 14, 22521–22530. [Google Scholar] [CrossRef]
- Asara, A.; Irfana, M.S.; Khana, K.A.; Zakib, W.; Umera, R. Self-sensing shape memory polymer composites reinforced with functional textiles. Compos. Sci. Technol. 2022, 221, 109219. [Google Scholar] [CrossRef]
- An, Y.; Yoshida, H.; Jing, Y.; Liang, T.; Okuzaki, H. Ionic shape memory polymer gels as multifunctional sensors. Soft Matter 2022, 18, 6791–6799. [Google Scholar] [CrossRef]
- Zhao, L.; Zhao, J.; Liu, Y.; Guo, Y.; Zhang, L.; Chen, Z.; Zhang, H.; Zhang, Z. Continuously tunable wettability by using surface patterned shape memory polymers with giant deformability. Small 2016, 12, 3327–3333. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, L.; Zhao, J.; Shi, J.; Dai, Z.; Wang, G.; Zhang, C.; Li, B.; Feng, X.; Zhang, H.; et al. Engineering surface patterns with shape memory polymers: Multiple design dimensions for diverse and hierarchical structures. ACS. Appl. Mater. Interfaces 2019, 11, 1563–1570. [Google Scholar] [CrossRef]
- Yan, W.; Ding, Y.; Zhang, R.; Luo, X.; Sheng, P.; Xue, P.; He, J. Dual-functional polymer blends with rapid thermo-responsive shape memory and repeatable self-healing properties. Polymer 2022, 239, 124436. [Google Scholar] [CrossRef]
- Spiegel, C.A.; Hackner, M.; Bothe, V.P.; Spatz, J.P.; Blasco, E. 4D printing of shape memory polymers: From macro to micro. Adv. Funct. Mater. 2022, 32, 2110580. [Google Scholar] [CrossRef]
- Meurer, J.; Kampes, R.H.; Bätz, T.; Hniopek, J.; Müschke, O.; Kimmig, J.; Zechel, S.; Schmitt, M.; Popp, J.; Hager, M.D.; et al. 3D-printable shape-memory polymers based on halogen bond interactions. Adv. Funct. Mater. 2022, 32, 2207313. [Google Scholar] [CrossRef]
- Kim, S.; Liu, N.; Shestopalov, A.A. Contact printing of multilayered thin films with shape memory polymers. ACS Nano 2022, 16, 6134–6144. [Google Scholar] [CrossRef]
- Abedin, R.; Feng, X.; Pojman, J., Jr.; Ibekwe, S.; Mensah, P.; Warner, I.; Li, G. A thermoset shape memory polymer-based syntactic foam with flame retardancy and 3D printability. ACS Appl. Polym. Mater. 2022, 4, 1183–1195. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yang, Y.; Jian, A.; Zhou, T.; Tao, G.; Ren, L.; Zang, J.; Zhang, Z. Co-extrusion 4D printing of shape memory polymers with continuous metallic fibers for selective deformation. Compos. Sci. Technol. 2022, 227, 109603. [Google Scholar] [CrossRef]
- Mattmann, M.; De Marco, C.; Briatico, F.; Tagliabue, S.; Colusso, A.; Chen, X.-Z.; Lussi, J.; Chautems, C.; Pané, S.; Nelson, B. Thermoset shape memory polymer variable stiffness 4D robotic catheters. Adv. Sci. 2022, 9, 2103277. [Google Scholar] [CrossRef]
- Li, W.; Zhao, L.; Dai, Z.; Jin, H.; Duan, F.; Liu, J.; Zeng, Z.; Zhao, J.; Zhang, Z. A temperature-activated nanocomposite metamaterial absorber with a wide tenability. Nano Res. 2018, 11, 3931–3942. [Google Scholar] [CrossRef]
- Liang, C.; Cui, D.; Yan, Z.; Zhang, X.; Luo, Q.; Hu, J.; He, X. Abnormal data detection of guidance angle based on SMP-SVDD for seeker. Sci. Rep. 2022, 12, 1509. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, J.; Weng, C.; Wang, T.; Liu, Y.; Han, Z.; Zhang, Z. A bidirectionally reversible light-responsive actuator based on shape memory polyurethane bilayer. Compos. A Appl. Sci. Manuf. 2021, 144, 106322. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, H.; Xie, Y.; Ouyang, P.; Ruan, Y.; Chen, J.; Weng, W.; He, X.; Xi, H. Optically reconfigurable shape memory metallopolymer mediated by a carbolong complex and radically exchangeable covalent bond. Polym. Chem. 2022, 13, 1844–1851. [Google Scholar] [CrossRef]
- Xue, J.; Ge, Y.; Liu, Z.; Liu, Z.; Jiang, J.; Li, G. Photoprogrammable moisture-responsive actuation of a shape memory polymer film. ACS Appl. Mater. Interfaces 2022, 14, 10836–10843. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Hamilton, L.E.; Mather, P.T.; Henderson, J.H. Cell-responsive shape memory polymers. ACS Biomater. Sci. Eng. 2022, 8, 2960–2969. [Google Scholar] [CrossRef] [PubMed]
- Yan, N.; Zheng, Z.; Liu, Y.; Jiang, X.; Wu, J.; Feng, M.; Xu, L.; Guan, Q.; Li, H. Photo-responsive shape memory polymer composites enabled by doping with biomass-derived carbon nanomaterials. Nano Res. 2022, 15, 1383–1392. [Google Scholar] [CrossRef]
- Song, Y.; Chen, Y.; Qian, W.; Shi, D.; Dong, W.; Wang, Y.; Ma, P.; Zhang, H. A photothermally triggered one-component shape memory polymer material prepared by crosslinking porphyrin-based amphiphilic copolymer self-assemblies. Soft Matter 2022, 18, 5562–5567. [Google Scholar] [CrossRef]
- Wang, X.; Jian, W.; Lu, H.; Lau, D.; Fu, Y.Q. Selective entanglement coupling of nanoparticles in polymer nanocomposite with high shape recovery stress. Compos. Sci. Technol. 2021, 207, 108728. [Google Scholar] [CrossRef]
- Salaeh, S.; Das, A.; Wießner, S. Design and fabrication of thermoplastic elastomer with ionic network: A strategy for good performance and shape memory capability. Polymer 2021, 223, 123699. [Google Scholar]
- Schwartz, J.J.; Porcincula, D.H.; Cook, C.C.; Fong, E.J.; Shusteff, M. Volumetric additive manufacturing of shape memory polymers. Polym. Chem. 2022, 13, 1813–1817. [Google Scholar] [CrossRef]
- Posada-Murcia, A.; Uribe-Gomez, J.M.; Förster, S.; Sommer, J.-U.; Dulle, M.; Ionov, L. Mechanism of behavior of two-way shape memory polymer under constant strain conditions. Macromolecules 2022, 55, 1680–1689. [Google Scholar] [CrossRef]
- Mao, Y.; Kubota, Y.; Feng, R.; Gong, J.; Ishigami, A.; Kobayashi, Y.; Watabe, T.; Aoki, D.; Otsuka, H.; Ito, H. Structure reconfigurable mechanochromic polymer with shape memory and strain-monitored function enabled by a covalent adaptable network. Macromolecules 2022, 55, 3948–3957. [Google Scholar] [CrossRef]
- Ni, Q.; Wu, J.; Kong, P.; Wang, Y.; Li, Y.; Li, Y.; Peng, X. Inverse vulcanization polymer-modified eucommiaulmoides gum with enhanced shape memory capability and sound absorption property. ACS Appl. Polym. Mater. 2022, 4, 4689–4698. [Google Scholar] [CrossRef]
- Yin, J.; Hu, J.; Han, Y.; Chen, Y.; Hu, J.; Zhang, Z.; Huang, S.; Duan, Y.; Wu, H.; Zhang, J. Facile fabrication of high nanofiller-content natural rubber nanocomposites for reversible plasticity shape memory polymers. Compos. Sci. Technol. 2022, 221, 109349. [Google Scholar] [CrossRef]
- Xu, L.; Zhao, J.; Shi, M.; Liu, J.; Wang, Z. Thermodynamic properties of TPI shape memory polymer composites reinforced by GO/SiO2 modified carbon fiber. Compos. Sci. Technol. 2022, 226, 109551. [Google Scholar]
- Guerriero, G.; Mattei, M.R.; Papirio, S.; Esposito, G.; Frunzo, L. Modelling the effect of SMP production and external carbon addition on S-driven autotrophic denitrification. Sci. Rep. 2022, 12, 7008. [Google Scholar] [CrossRef]
- Xue, Y.; Lei, J.; Liu, Z. A thermodynamic constitutive model for shape memory polymers based on phase transition. Polymer 2022, 243, 124623. [Google Scholar] [CrossRef]
- Qi, X.; Dong, Y.; Islam, M.D.Z.; Zhu, Y.; Fu, Y.; Fu, S.-Y. Excellent triple-shape memory effect and superior recovery stress of ethylene-vinyl acetate copolymer fiber. Compos. Sci. Technol. 2021, 203, 108609. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, J.; Zhao, L.; Li, W.; Zhang, H.; Yu, X.; Zhang, Z. High performance shape memory epoxy/carbon nanotube nanocomposites. ACS Appl. Mater. Inter. 2016, 8, 311–320. [Google Scholar]
- Liu, Y.; Guo, Y.; Zhao, J.; Chen, X.; Zhang, H.; Hu, G.; Yu, X.; Zhang, Z. Carbon fiber reinforced shape memory epoxy composites with superior mechanical performances. Compos. Sci. Technol. 2019, 177, 49–56. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, Y.; Liu, J.; Zhao, J.; Zhang, H.; Zhang, Z. Shape memory epoxy composites with high mechanical performance manufactured by multi-material direct ink writing. Compos. A Appl. Sci. Manuf. 2020, 135, 105903. [Google Scholar] [CrossRef]
- Shafe, A.; Wick, C.D.; Peters, A.J.; Liu, X.; Li, G. Effect of atomistic fingerprints on thermomechanical properties of epoxy-diamine thermoset shape memory polymers. Polymer 2022, 242, 124577. [Google Scholar]
- Wang, T.; Zhao, J.; Weng, C.; Wang, T.; Liu, Y.; Han, Z.; Zhang, Z. Three-dimensional graphene coated shape memory polyurethane foam with fast responsive performance. J. Mater. Chem. C 2021, 9, 7444–7451. [Google Scholar] [CrossRef]
- Xu, X.; Fan, P.; Ren, J.; Cheng, Y.; Ren, J.; Zhao, J.; Song, R. Self-healing thermoplastic polyurethane (TPU)/polycaprolactone (PCL)/multi-wall carbon nanotubes (MWCNTs) blend as shape-memory composites. Compos. Sci. Technol. 2018, 168, 255–262. [Google Scholar] [CrossRef]
- Wang, T.; Liu, Y.; Zhao, J.; Zhang, H.; Zhang, Z. A facile approach to fabricate two-way shape memory polyurethane with large reversible strain and high shape stability. Smart Mater. Struct. 2020, 29, 055033. [Google Scholar] [CrossRef]
- Liang, R.; Yu, H.; Wang, L.; Amin, B.U.; Wang, N.; Fu, J.; Xing, Y.; Shen, D.; Ni, Z. Triple and two-way reversible shape memory polymer networks with body temperature and water responsiveness. Chem. Mater. 2021, 33, 1190–1200. [Google Scholar] [CrossRef]
- Xue, T.; Huang, Z.; Zhang, P.; Su, M.; Hu, X.; Wu, T.; Fan, B.; Chen, G.; Yu, G.; Liu, W.; et al. A shape memory scaffold for body temperature self-repairing wearable perovskite solar cells with efficiency exceeding 21%. InfoMat 2022, 4, e12358. [Google Scholar]
Samples | Molecular Weight (g mol−1) | -OH Value (mg KOH g−1) | Viscosity (mPa s) | Melting Point (°C) |
---|---|---|---|---|
PCL205 | 550 | 204 | 40 | 18–23 |
PCL210 | 1000 | 112 | 150 | 30–40 |
PCL220 | 2000 | 56 | 480 | 40–50 |
PCL230 | 3000 | 37 | 1100 | 50–60 |
Instruments and Equipment | Model | Manufacturer |
---|---|---|
High-speed mixer | Dispermat AE | VMA Co., Dachau, Germany |
Fourier transform infrared spectrometer | Spectrum One | Perkin-Elmer Co., Waltham, MA, USA |
Scanning electron microscope | Hitachi S-4800 | Hitachi Co., Tokyo, Japan |
Differential scanning calorimeter | Q2000 | TA Instruments Co., New Castle, DE, USA |
Thermogravimetric analyzer | Q500 | TA Instruments Co., New Castle, DE, USA |
Dynamic mechanical, thermal analyzer | Q800 | TA Instruments Co., New Castle, DE, USA |
X-ray diffractometer | D/MAX-TTRIII(CBO) | Rigaku Co., Tokyo, Japan |
Laser cutting machine | CT-LEG50 | Beijing Chutian Laser Equipment Co. Ltd., Beijing, China |
Universal testing machine | Roell BT2-FR010TE.A50 | Zwick Co., Ulm, Germany |
PCL-2OH | PCL205 | PCL210 | PCL220 | PCL230 |
Tm (°C) | 36.7 | 42.1 | 45.7 | 51.0 |
ΔHm (J·g−1) | 76.0 | 78.6 | 75.7 | 73.8 |
Crystallinity | 54.3% | 56.1% | 54.1% | 52.7% |
SMPU | SMPU-05 | SMPU-10 | SMPU-20 | SMPU-30 |
Ttrans (°C) | — | 33.8 | 36.9 | 42.3 |
ΔHm (J·g−1) | 0 | 6.3 | 25.1 | 33.3 |
Crystallinity | 0% | 5.8% | 20.6% | 26.1% |
Samples | εload (%) | εfix (%) | εrec (%) | Rf (%) | Rr (%) |
---|---|---|---|---|---|
SMPU-05 | 82.4 | 3.1 | 0.6 | 3.8 | 82.1 |
SMPU-10 | 120.8 | 92.0 | 1.7 | 76.1 | 98.2 |
SMPU-20 | 97.1 | 96.0 | 1.6 | 98.8 | 98.4 |
SMPU-30 | 120.6 | 119.2 | 1.9 | 98.9 | 98.7 |
Samples | SMPU(0.67) | SMPU(0.50) | SMPU(0.33) | SMPU(0.17) |
---|---|---|---|---|
Ttrans (°C) | 32.3 | 34.2 | 36.9 | 39.7 |
ΔHm (J·g−1) | - | 2.19 | 25.1 | 30.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Han, Z.; Jia, C.; Wang, T.; Wang, X.; Hu, F.; Zhang, H.; Zhao, J.; Zhang, X. Preparation and Characterization of Body-Temperature-Responsive Thermoset Shape Memory Polyurethane for Medical Applications. Polymers 2023, 15, 3193. https://doi.org/10.3390/polym15153193
Yang X, Han Z, Jia C, Wang T, Wang X, Hu F, Zhang H, Zhao J, Zhang X. Preparation and Characterization of Body-Temperature-Responsive Thermoset Shape Memory Polyurethane for Medical Applications. Polymers. 2023; 15(15):3193. https://doi.org/10.3390/polym15153193
Chicago/Turabian StyleYang, Xiaoqing, Zhipeng Han, Chengqi Jia, Tianjiao Wang, Xiaomeng Wang, Fanqi Hu, Hui Zhang, Jun Zhao, and Xuesong Zhang. 2023. "Preparation and Characterization of Body-Temperature-Responsive Thermoset Shape Memory Polyurethane for Medical Applications" Polymers 15, no. 15: 3193. https://doi.org/10.3390/polym15153193
APA StyleYang, X., Han, Z., Jia, C., Wang, T., Wang, X., Hu, F., Zhang, H., Zhao, J., & Zhang, X. (2023). Preparation and Characterization of Body-Temperature-Responsive Thermoset Shape Memory Polyurethane for Medical Applications. Polymers, 15(15), 3193. https://doi.org/10.3390/polym15153193