Triple Hydrophilic Statistical Terpolymers via RAFT Polymerization: Synthesis and Properties in Aqueous Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of P(DEGMA-co-DMAEMA-co-OEGMA) Terpolymers
2.3. Self-Assembly of P(DEGMA-co-DMAEMA-co-OEGMA) in Aqueous Media
2.4. Salt Effects
2.5. Characterization Methods
2.5.1. Size Exclusion Chromatography (SEC)
2.5.2. Proton Nuclear Magnetic Resonance Spectroscopy (1H-NMR)
2.5.3. Attenuated Total Reflectance-Fourier Transform Infrared (ATR–FTIR) Spectroscopy
2.5.4. Dynamic Light Scattering (DLS)
2.5.5. Electrophoretic Light Scattering (ELS)
2.5.6. Fluorescence Spectroscopy (FS)
3. Results and Discussion
3.1. Synthesis and Molecular Characterization of the Terpolymers
3.2. Self-Assembly in Aqueous Media
3.3. Thermoresponsiveness of P(DEGMA-co-DMAEMA-co-OEGMA) Terpolymers
3.4. pH Responsiveness of P(DEGMA-co-DMAEMA-co-OEGMA) Terpolymers
3.5. Salt Solutions of P(DEGMA-co-DMAEMA-co-OEGMA) Terpolymers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perrier, S. 50th Anniversary Perspective: RAFT Polymerization—A User Guide. Macromolecules 2017, 50, 7433–7447. [Google Scholar] [CrossRef]
- Boyer, C.; Bulmus, V.; Davis, T.P.; Ladmiral, V.; Liu, J.; Perrier, S. Bioapplications of RAFT Polymerization. Chem. Rev. 2009, 109, 5402–5436. [Google Scholar] [CrossRef] [PubMed]
- Duncan, R. The dawning era of polymer therapeutics. Nat. Rev. Drug Discov. 2003, 2, 347–360. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Raghupathi, K.; Song, C.; Prasad, P.; Thayumanavan, S. Self-assembly of random copolymers. Chem. Commun. 2014, 50, 13417–13432. [Google Scholar] [CrossRef] [PubMed]
- Schmaljohann, D. Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev. 2006, 58, 1655–1670. [Google Scholar] [CrossRef]
- Gandhi, A.; Paul, A.; Sen, S.; Sen, K. Studies on thermoresponsive polymers: Phase behaviour, drug delivery and Biomedical applications. Asian J. Pharm. Sci. 2014, 10, 99–107. [Google Scholar] [CrossRef]
- Liu, F.; Urban, M.W. Recent advances and challenges in designing stimuli-responsive polymers. Prog. Polym. Sci. 2010, 35, 3–23. [Google Scholar] [CrossRef]
- Kocak, G.; Tuncer, C.; Bütün, V. pH-Responsive polymers. Polym. Chem. 2017, 8, 144–176. [Google Scholar] [CrossRef]
- Zhang, Y.; Cremer, P.S. Interactions between macromolecules and ions: The Hofmeister series. Curr. Opin. Chem. Biol. 2006, 10, 658–663. [Google Scholar] [CrossRef]
- Shymborska, Y.; Stetsyshyn, Y.; Raczkowska, J.; Awsiuk, K.; Ohar, H.; Budkowski, A. Impact of the various buffer solutions on the temperature-responsive properties of POEGMA-grafted brush coatings. Colloid Polym. Sci. 2022, 300, 487–495. [Google Scholar] [CrossRef]
- Tomara, M.; Selianitis, D.; Pispas, S. Dual-Responsive Amphiphilic P(DMAEMA-co-LMA-co-OEGMA) Terpolymer Nano-Assemblies in Aqueous Media. Nanomaterials 2022, 12, 3791. [Google Scholar] [CrossRef] [PubMed]
- Selianitis, D.; Pispas, S. PDEGMA-b-PDIPAEMA copolymers via RAFT polymerization and their pH and thermoresponsive schizophrenic self-assembly in aqueous media. J. Polym. Sci. 2020, 58, 1867–1880. [Google Scholar] [CrossRef]
- Rangelov, S.; Simon, P.; Toncheva-Moncheva, N.; Dimitrov, P.; Gajewska, B.; Tsvetanov, C.B. Nanosized colloidal particles from thermosensitive poly(methoxydiethyleneglycol methacrylate)s in aqueous media. Polym. Bull. 2012, 68, 2175–2185. [Google Scholar] [CrossRef]
- Stawski, D.; Nowak, A. Thermal properties of poly(N,N-dimethylaminoethyl methacrylate). PLoS ONE 2019, 14, e0217441. [Google Scholar] [CrossRef]
- Lutz, J.-F. Polymerization of oligo(ethylene glycol) (meth)acrylates: Toward new generations of smart biocompatible materials. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 3459–3470. [Google Scholar] [CrossRef]
- Keddie, D.J.; Moad, G.; Rizzardo, E.; Thang, S.H. RAFT Agent Design and Synthesis. Macromolecules 2012, 45, 5321–5342. [Google Scholar] [CrossRef]
- Ramírez-Jiménez, A.; Montoya-Villegas, K.A.; Licea-Claverie, A.; Gónzalez-Ayón, M.A. Tunable Thermo-Responsive Copolymers from DEGMA and OEGMA Synthesized by RAFT Polymerization and the Effect of the Concentration and Saline Phosphate Buffer on Its Phase Transition. Polymers 2019, 11, 1657. [Google Scholar] [CrossRef] [PubMed]
- Mendrek, B.; Sieron, L.; Zymelka-Miara, I.; Binkiewicz, P.; Libera, M.; Smet, M.; Trzebicka, B.; Sieron, A.L.; Kowalczuk, A.; Dworak, A. Nonviral Plasmid DNA Carriers Based on N,N′-Dimethylaminoethyl Methacrylate and Di(ethylene glycol) Methyl Ether Methacrylate Star Copolymers. Biomacromolecules 2015, 16, 3275–3285. [Google Scholar] [CrossRef]
- Li, Q.; Wang, L.; Chen, F.; Constantinou, A.P.; Georgiou, T.K. Thermoresponsive oligo(ethylene glycol) methyl ether methacrylate based copolymers: Composition and comonomer effect. Polym. Chem. 2022, 13, 2506–2518. [Google Scholar] [CrossRef]
- Kafetzi, M.; Pispas, S. Multifaceted pH and Temperature Induced Self-Assembly of P(DMAEMA-co-LMA)-b-POEGMA Terpolymers and Their Cationic Analogues in Aqueous Media. Macromol. Chem. Phys. 2021, 222, 2000358. [Google Scholar] [CrossRef]
- Lutz, J.-F.; Weichenhan, K.; Akdemir, Ö.; Hoth, A. About the Phase Transitions in Aqueous Solutions of Thermoresponsive Copolymers and Hydrogels Based on 2-(2-methoxyethoxy)ethyl Methacrylate and Oligo(ethylene glycol) Methacrylate. Macromolecules 2007, 40, 2503–2508. [Google Scholar] [CrossRef]
- Rikiyama, K.; Sanada, Y.; Watanabe, K.; Aida, M.; Katsumoto, Y. Unimer Structure and Micellization of Poly(ethylene oxide)-Stereocontrolled Poly(N-isopropylacrylamide) Alternating Multiblock Copolymers in Aqueous Solution. Macromolecules 2019, 52, 7188–7196. [Google Scholar] [CrossRef]
- Horiuchi, T.; Sakai, T.; Sanada, Y.; Watanabe, K.; Aida, M.; Katsumoto, Y. Association Behavior of Poly(ethylene oxide)-Poly(propylene oxide) Alternating Multiblock Copolymers in Water toward Thermally Induced Phase Separation. Langmuir 2017, 33, 14649–14656. [Google Scholar] [CrossRef] [PubMed]
- Konefał, R.; Spěváček, J.; Mužíková, G.; Laga, R. Thermoresponsive behavior of poly(DEGMA)-based copolymers. NMR and dynamic light scattering study of aqueous solutions. Eur. Polym. J. 2020, 124, 109488. [Google Scholar] [CrossRef]
- Weaver, L.G.; Stockmann, R.; Postma, A.; Thang, S.H. Multi-responsive (diethylene glycol)methyl ether methacrylate (DEGMA)-based copolymer systems. RSC Adv. 2016, 6, 90923–90933. [Google Scholar] [CrossRef]
- Becer, C.R.; Hahn, S.; Fijten, M.W.M.; Thijs, H.M.L.; Hoogenboom, R.; Schubert, U.S. Libraries of methacrylic acid and oligo(ethylene glycol) methacrylate copolymers with LCST behavior. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 7138–7147. [Google Scholar] [CrossRef]
- Balafouti, A.; Pispas, S. Hyperbranched Polyelectrolyte Copolymers as Novel Candidate Delivery Systems for Bio-Relevant Compounds. Materials 2023, 16, 1045. [Google Scholar] [CrossRef]
- Vardaxi, A.; Pispas, S. Random cationic copolymers as nanocarriers for ovalbumin. J. Drug Deliv. Sci. Technol. 2023, 80, 104177. [Google Scholar] [CrossRef]
- Luo, S.; Han, M.; Cao, Y.; Ling, C.; Zhang, Y. Temperature- and pH-responsive unimolecular micelles with a hydrophobic hyperbranched core. Colloid Polym. Sci. 2011, 289, 1243–1251. [Google Scholar] [CrossRef]
- Moghaddam, S.Z.; Thormann, E. The Hofmeister series: Specific ion effects in aqueous polymer solutions. J. Colloid Interface Sci. 2019, 555, 615–635. [Google Scholar] [CrossRef]
Sample | Mw (×104) (g/mol) a | Mw/Mn a | Initial Feed Ratio d (DEGMA/DMAEMA/OEGMA) | %wt Compositon b,d (DEGMA/DMAEMA/OEGMA) | Molar Composition b,d (DEGMA/DMAEMA/OEGMA) |
---|---|---|---|---|---|
P-1 | 2.30 | 1.34 | [0.44:1:0.34] | [12:36:52] | [0.28:1:0.48] |
P-2 | 1.90 | 1.24 | [1:0.59:0.38] | [40:20:40] c | [1:0.59:0.38] c |
P-3 | 1.95 | 1.25 | [0.88:1:0.17] | [43:44:13] | [0.82:1:0.1] |
Sample | pH | I90° (kHz) | Rh (nm) |
---|---|---|---|
P-1 | 7 | 39 | 98 |
10 | 140 | 81 | |
P-2 | 7 | 70 | 167 |
10 | 67 | 92 | |
P-3 | 7 | 23 | 2 |
10 | 80 | 94 |
Samplel | pH | ζ-Potential (mV) |
---|---|---|
P-1 | 3 | +3.5 |
7 | +2 | |
10 | −1.5 | |
P-2 | 3 | +5 |
7 | +0.7 | |
10 | −1 | |
P-3 | 3 | +40 |
7 | −0.42 | |
10 | −0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vagenas, D.; Pispas, S. Triple Hydrophilic Statistical Terpolymers via RAFT Polymerization: Synthesis and Properties in Aqueous Solutions. Polymers 2023, 15, 2492. https://doi.org/10.3390/polym15112492
Vagenas D, Pispas S. Triple Hydrophilic Statistical Terpolymers via RAFT Polymerization: Synthesis and Properties in Aqueous Solutions. Polymers. 2023; 15(11):2492. https://doi.org/10.3390/polym15112492
Chicago/Turabian StyleVagenas, Dimitrios, and Stergios Pispas. 2023. "Triple Hydrophilic Statistical Terpolymers via RAFT Polymerization: Synthesis and Properties in Aqueous Solutions" Polymers 15, no. 11: 2492. https://doi.org/10.3390/polym15112492
APA StyleVagenas, D., & Pispas, S. (2023). Triple Hydrophilic Statistical Terpolymers via RAFT Polymerization: Synthesis and Properties in Aqueous Solutions. Polymers, 15(11), 2492. https://doi.org/10.3390/polym15112492