Stability of Properties of Layer-by-Layer Coated Membranes under Passage of Electric Current
Abstract
1. Introduction
2. Materials and Methods
2.1. Membrane Modification
2.2. Voltammetry
2.3. Electrodialysis of Mixed Solution
2.4. Scanning Electron Microscopy
3. Results and Discussion
3.1. Scanning Electron Microscopy
3.2. i-V Curves before Electrodialysis
3.3. Change of Concentrations during Electrodialysis
3.4. Changes in Shape of i-V Curves
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sulistiyono, E.; Harjanto, S.; Lalasari, L.H. Separation of magnesium and lithium from brine water and bittern using sodium silicate precipitation agent. Resources 2022, 11, 89. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Lee, M.S. A review on the separation of lithium ion from leach liquors of primary and secondary resources by solvent extraction with commercial extractants. Processes 2018, 6, 55. [Google Scholar] [CrossRef]
- Ahdab, Y.D.; Rehman, D.; Lienhard, J.H. Brackish water desalination for greenhouses: Improving groundwater quality for irrigation using monovalent selective electrodialysis reversal. J. Memb. Sci. 2020, 610, 118072. [Google Scholar] [CrossRef]
- Decher, G.; Hong, J.D.; Schmitt, J. Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Film 1992, 210–211, 831–835. [Google Scholar] [CrossRef]
- Hoogeveen, N.G.; Cohen Stuart, M.A.; Fleer, G.J. Formation and Stability of Multilayer of Polyelectrolytes. Langmuir 1996, 12, 3675–3681. [Google Scholar] [CrossRef]
- Krasemann, L.; Tieke, B. Selective ion transport across self-assembled alternating multilayers of cationic and anionic polyelectrolytes. Langmuir 1999, 16, 287–290. [Google Scholar] [CrossRef]
- Kirkland, J.J. Porous thin-layer modified glass bead supports for gas liquid chromatography. Anal. Chem. 1965, 37, 1458–1461. [Google Scholar] [CrossRef]
- Berndt, P.; Kurihara, K.; Kunitake, T. Adsorption of poly(styrenesulfonate) onto an ammonium monolayer on mica: A surface forces study. Langmuir 1992, 8, 2486–2490. [Google Scholar] [CrossRef]
- Lvov, Y.; Katsuhiko, A.; Toyoki, K. Layer-by-layer assembly of alternate protein/polyion ultrathin films. Chem. Letters 1994, 23, 2323–2326. [Google Scholar] [CrossRef]
- Gentile, P.; Carmagnolia, I.; Nardo, T.; Chiono, V. Layer-by-layer assembly for biomedical applications in the last decade. Nanotechnology 2015, 26, 422001. [Google Scholar] [CrossRef]
- Alkekhia, D.; Hammond, P.T.; Shukla, A. Layer-by-layer biomaterials for drug delivery. Annu. Rev. Biomed. Eng. 2020, 22, 1–24. [Google Scholar] [CrossRef] [PubMed]
- White, N.; Misovich, M.; Yaroshchuk, A.; Bruening, M.L. Coating of Nafion membranes with polyelectrolyte multilayers to achieve high monovalent/divalent cation electrodialysis selectivities. ACS Appl. Mater. Interfaces 2015, 7, 6620–6628. [Google Scholar] [CrossRef]
- Luo, T.; Abdu, S.; Wessling, M. Selectivity of ion exchange membranes: A review. J. Memb. Sci. 2018, 555, 429–454. [Google Scholar] [CrossRef]
- Stenina, I.; Golubenko, D.; Nikonenko, V.; Yaroslavtsev, A. Selectivity of transport provesses in ion-exchange membranes: Relationship with the structure and methods for its improvement. Int. J. Mol. Sci. 2020, 21, 5517. [Google Scholar] [CrossRef] [PubMed]
- Mulyati, S.; Takagi, R.; Fujii, A.; Ohmukai, Y.; Matsuyama, H. Simultaneous improvement of the monovalent anion selectivity and antifouling properties of an anion exchange membrane in an electrodialysis process, using polyelectrolyte multilayer deposition. J. Memb. Sci. 2013, 431, 113–120. [Google Scholar] [CrossRef]
- Jiang, W.; Lin, L.; Xu, X.; Wang, H.; Xu, P. Physicochemical and electrochemical characterization of cation-exchange membranes modified with polyethyleneimine for elucidating enhanced monovalent permselectivity of electrodialysis. J. Memb. Sci. 2019, 542, 545–556. [Google Scholar] [CrossRef]
- Zhao, Y.; Gao, C.; van der Bruggen, B. Technology-driven layer-by-layer assembly of a membrane for selective separation of monovalent anions and antifouling. Nanoscale 2019, 11, 2264–2274. [Google Scholar] [CrossRef] [PubMed]
- Kotoka, F.; Merino-Garcia, I.; Velizarov, S. Surface modifications of anion exchange membranes for an improved reverse electrodialysis process performance: A review. Membranes 2020, 10, 160. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhu, J.; Ding, J.; Van der Bruggen, B.; Shen, J.; Gao, C. Electric-pulse layer-by-layer assembled of anion exchange membrane with enhanced monovalent selectivity. J. Memb. Sci. 2018, 548, 81–90. [Google Scholar] [CrossRef]
- Guzman, E.; Ortega, F.; Rubio, R.G. R.G. Layer-by-layer materials for the fabrication of devices with electrochemical applications. Energies 2022, 15, 3399. [Google Scholar] [CrossRef]
- McShane, M.J.; Lvov, Y.M. Electrostatic self-assembly: Layer-by-layer. In Dekker Encyclopedia of Nanoscience and Nanotechnology, 3rd ed.; Lyshevski, S.E., Ed.; CRC Press: Boca Raton, FL, USA, 2014; pp. 1342–1358. [Google Scholar] [CrossRef]
- Zhang, C.; Li, C.; Aliakbarlu, J.; Cui, H.; Lin, L. Typical application of electrostatic layer-by-layer self-assembly technology in food safety assurance. Trends Food Sci. Tech. 2022, 129, 88–97. [Google Scholar] [CrossRef]
- Rawtani, D.; Agrawal, Y.K. Emerging strategies and applications of layer-by-layer self-assembly. Nanobiomedicine 2014, 1, 8. [Google Scholar] [CrossRef]
- Lowack, K.; Helm, C.A. Molecular mechanisms controlling the self-assembly process of polyelectrolyte multilayers. Macromolecules 1998, 31, 823–833. [Google Scholar] [CrossRef]
- Adusumilli, M.; Bruening, M.L. Variation of ion-exchange capacity, ζ potential, and ion-transport selectivities with the number of layers in a multilayer polyelectrolyte film. Langmuir 2009, 25, 7478–7485. [Google Scholar] [CrossRef] [PubMed]
- Guzman, E.; Mateos-Maroto, A.; Ruano, M.; Ortega, F.; Rubio, R.G. Layer-by-Layer polyelectrolyte assemblies for encapsulation and release of active compounds. Adv. Colloid Interface Sci. 2017, 249, 290–307. [Google Scholar] [CrossRef] [PubMed]
- Park, M.-K.; Lee, D.-C.; Liang, Y.; Lin, G.; Yu, L. Defect-free polymer multilayers prepared via chemoselective immobilization. Langmuir 2007, 23, 4367–4372. [Google Scholar] [CrossRef]
- Evdochenko, E.; Kamp, J.; Femmer, R.; Xu, Y.; Nikonenko, V.V.; Wessling, M. Unraveling the effect of charge distribution in a polyelectrolyte multilayer nanofiltration membrane on its ion transport properties. J. Memb. Sci. 2020, 611, 118045. [Google Scholar] [CrossRef]
- Guzman, E.; Rubio, R.G.; Ortega, F. A closer physico-chemical look to the layer-by-layer electrostatic self-assembly of polyelectrolyte multilayers. Adv. Colloid Interface Sci. 2020, 282, 102197. [Google Scholar] [CrossRef]
- Petrila, L.-M.; Bucatariu, F.; Mihai, M.; Teodosiu, C. Polyelectrolyte multilayers: An overview on fabrication, properties, and biomedical and environmental applications. Materials 2021, 14, 4152. [Google Scholar] [CrossRef]
- Ghalloussi, R.; Chaabane, L.; Larchet, C.; Dammak, L.; Grande, D. Structural and physicochemical investigation of ageing of ion-exchange membranes in electrodialysis for food industry. Sep. Purif. Technol. 2014, 123, 229–234. [Google Scholar] [CrossRef]
- Vasil’eva, V.I.; Akberova, E.M.; Zabolotskii, V.I. Electroconvection in systems with heterogeneous ion-exchange membranes after thermal modification. Rus. J. Electrochem. 2017, 53, 398–410. [Google Scholar] [CrossRef]
- Zabolotskii, V.I.; Chermit, R.K.; Sharafan, M.V. Mass transfer mechanism and chemical stability of strongly basic anion-exchange membranes under overlimiting current conditions. Rus. J. Electrochem. 2014, 50, 38–45. [Google Scholar] [CrossRef]
- Doi, S.; Takumi, N.; Kakihana, Y.; Higa, M. Alkali attack on cation-exchange membranes with polyvinyl chloride backing and binder: Comparison with anion-exchange membranes. Membranes 2020, 10, 228. [Google Scholar] [CrossRef] [PubMed]
- Doi, S.; Kinoshita, M.; Yasukawa, M.; Higa, M. Alkali attack on anion exchange membranes with PVC backing and binder: II Prediction of electrical and mechanical performances from simple optical analyses. Membranes 2018, 8, 133. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Wang, N.; Jia, J.; Song, D.; Zuo, T.; Liu, K.; Che, Q. Constructing the basal nanofibers suit of layer-by-layer self-assembly membranes as anion exchange membranes. J. Molecular Liquids 2022, 350, 118536. [Google Scholar] [CrossRef]
- Kudashova, D.S.; Kononenko, N.A.; Brovkina, M.A.; Falina, I.V. Study of perfluorinated membrane degradation during operation in proton exchange membrane fuel cell. Membr. Membr. Technol. 2022, 4, 23–30. [Google Scholar] [CrossRef]
- Abdu, S.; Marti-Calatayud, M.-C.; Wong, J.E.; García-Gabaldon, M.; Wessling, M. Layer-by-layer modification of cation exchange membranes controls ion selectivity and water splitting. ACS Appl. Mater. Interfaces 2014, 6, 1843–1854. [Google Scholar] [CrossRef] [PubMed]
- Rybalkina, O.; Tsygurina, K.; Sabbatovskiy, K.; Kirichenko, E.; Sobolev, V.; Kirichenko, K. Dependence of electrochemical properties of MK-40 heterogeneous membrane on number of adsorbed layers of polymers. Membranes 2022, 12, 145. [Google Scholar] [CrossRef] [PubMed]
- Achoh, A.R.; Zabolotsky, V.I.; Lebedev, K.A.; Sharafan, M.V.; Yaroslavtsev, A.B. Electrochemical properties and selectivity of bilayer ion-exchange membranes in ternary solutions of strong electrolytes. Membr. Membr. Technol. 2021, 3, 52–71. [Google Scholar] [CrossRef]
- Titova, T.S.; Yurova, P.A.; Kuleshova, V.A.; Parshina, A.V.; Stenina, I.A.; Bobreshova, O.V.; Yaroslavtsev, A.B. MF-4SC membranes modified by polyaniline for potentiometric determination of saccharin and sodium ions in aqueous solutions. Membr. Membr. Technol. 2021, 3, 411–418. [Google Scholar] [CrossRef]
- Polyethylenimine (Branched) Safety Data Sheet. Available online: https://www.sigmaaldrich.com/RU/en/sds/aldrich/408719 (accessed on 29 October 2022).
- Park, J.S.; Choi, J.H.; Yeon, K.H.; Moon, S.H. An approach to fouling characterization of an ion-exchange membrane using current-voltage relation and electrical impedance spectroscopy. J. Colloid Interface Sci. 2006, 294, 129–138. [Google Scholar] [CrossRef]
- Belova, E.I.; Lopatkova, G.Y.; Pismenskaya, N.D.; Nikonenko, V.V.; Larchet, C.; Pourcelly, G. Effect of anion-exchange membrane surface properties on mechanisms of overlimiting mass transfer. J. Phys. Chem. B. 2006, 110, 13458–13469. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-J.; Hong, M.-K.; Han, S.-D.; Moon, S.-H. Influence of the heterogeneous structure on the electrochemical properties of anion exchange membranes. J. Memb. Sci. 2008, 320, 549–555. [Google Scholar] [CrossRef]
- Rubinstein, I.; Zaltzman, B.; Pundik, T. Ion-exchange funneling in thin-film coating modification of heterogeneous electrodialysis membranes. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2002, 65, 041507. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Lee, H.; Moon, S. Effects of electrolytes on the transport phenomena in a cation-exchange membrane. J. Colloid Interface Sci. 2001, 238, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Belova, E.; Lopatkova, G.; Pismenskaya, N.; Nikonenko, V.; Larchet, C. Role of water splitting in development of electroconvection in ion-exchange membrane systems. Desalination 2006, 199, 59–61. [Google Scholar] [CrossRef]
- Melnikov, S.; Bondarev, D.; Nosova, E.; Melnikova, E.; Zabolotskiy, V. Water splitting and transport of ions in electromembrane system with bilayer ion-exchange membrane. Membranes 2020, 10, 346. [Google Scholar] [CrossRef] [PubMed]
Parameter | MK-40 | MK-40-M(PAH) | MK-40-M(PEI) |
---|---|---|---|
ilim before ED, mA/cm2 | 2.39 | 2.72 | 2.85 |
ilim after ED, mA/cm2 | 2.48 | 2.75 | 2.50 |
Δφ at ilim before ED, V | 0.46 | 0.65 | 0.80 |
Δφ at ilim after ED, V | 0.49 | 0.83 | 0.44 |
ROhm after–ROhm before, Ohm | 3.62 | 11.8 | −58.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solonchenko, K.; Rybalkina, O.; Chuprynina, D.; Kirichenko, E.; Kirichenko, K.; Nikonenko, V. Stability of Properties of Layer-by-Layer Coated Membranes under Passage of Electric Current. Polymers 2022, 14, 5172. https://doi.org/10.3390/polym14235172
Solonchenko K, Rybalkina O, Chuprynina D, Kirichenko E, Kirichenko K, Nikonenko V. Stability of Properties of Layer-by-Layer Coated Membranes under Passage of Electric Current. Polymers. 2022; 14(23):5172. https://doi.org/10.3390/polym14235172
Chicago/Turabian StyleSolonchenko, Ksenia, Olesya Rybalkina, Daria Chuprynina, Evgeniy Kirichenko, Ksenia Kirichenko, and Victor Nikonenko. 2022. "Stability of Properties of Layer-by-Layer Coated Membranes under Passage of Electric Current" Polymers 14, no. 23: 5172. https://doi.org/10.3390/polym14235172
APA StyleSolonchenko, K., Rybalkina, O., Chuprynina, D., Kirichenko, E., Kirichenko, K., & Nikonenko, V. (2022). Stability of Properties of Layer-by-Layer Coated Membranes under Passage of Electric Current. Polymers, 14(23), 5172. https://doi.org/10.3390/polym14235172