Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (818)

Search Parameters:
Keywords = heterogeneous membrane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1128 KB  
Article
Barriers, Limitations, and Experiences with Clinical Trials—Treatment in Rare Diseases with Prader–Willi Syndrome as an Example
by Merlin G. Butler, Spencer Silvey and Harold J. P. van Bosse
Genes 2025, 16(12), 1436; https://doi.org/10.3390/genes16121436 - 1 Dec 2025
Abstract
Background/Objectives: Developing and implementing clinical trials for rare diseases is complicated by the incomplete understanding of the varied genotype and subsequent phenotypic differences of a condition, particularly when low numbers of subjects are enrolled in a study. Moreover, a small-scale clinical study [...] Read more.
Background/Objectives: Developing and implementing clinical trials for rare diseases is complicated by the incomplete understanding of the varied genotype and subsequent phenotypic differences of a condition, particularly when low numbers of subjects are enrolled in a study. Moreover, a small-scale clinical study may indicate a positive outcome but have too small of a sampling population to adequately evaluate unwanted outcomes. Prader–Willi syndrome (PWS) is one such genetic disorder with varied subtypes and heterogeneity, where little progress has been made in treatment discoveries. Recently, the FDA approved diazoxide choline for treating key features of hyperphagia and obesity associated with PWS based on clinical trial experience. Diazoxide choline activates the ATP-sensitive potassium channel (KATP) of pancreatic beta cells, inhibiting the release of insulin. One of the subunits of KATP is the protein Kir6.2, the gene product of KCNJ11. Methods: Web-based programs and datasets were used to study the gene and protein functional enrichments of Kir6.2 and KCNJ11, including shared gene and/or protein–protein interactions, and biological processes and functions. Results: Four essential domains of related functions were identified: (1) apoptosis, protein degradation, and inflammation; (2) the coupling of G proteins needed for KATP channel activation; (3) glucose metabolism and control; and (4) the maintenance of intracellular ionic homeostasis. Conclusions: Cellular metabolism in the pancreas is linked to membrane excitability by KATP, which regulates insulin production, energy production and storage, appetite regulation, and fatty acid synthesis. As such, diazoxide choline may influence several biological systems beyond pancreatic and metabolic functions. Full article
(This article belongs to the Special Issue Molecular Basis in Rare Genetic Disorders)
Show Figures

Figure 1

15 pages, 1356 KB  
Review
Levosimendan in ECMO: A Paradigm Shift or an Adjunctive Option?
by Debora Emanuela Torre and Carmelo Pirri
Future Pharmacol. 2025, 5(4), 70; https://doi.org/10.3390/futurepharmacol5040070 (registering DOI) - 1 Dec 2025
Abstract
Levosimendan, a calcium-sensitizing inodilator, has emerged as a promising adjunctive therapy in patients undergoing veno-arterial extracorporeal membrane oxygenation (V-A ECMO). Its pharmacodynamic profile, combining positive inotropy with vasodilation and mitochondrial protective effects, offers a unique therapeutic potential in the context of mechanical circulatory [...] Read more.
Levosimendan, a calcium-sensitizing inodilator, has emerged as a promising adjunctive therapy in patients undergoing veno-arterial extracorporeal membrane oxygenation (V-A ECMO). Its pharmacodynamic profile, combining positive inotropy with vasodilation and mitochondrial protective effects, offers a unique therapeutic potential in the context of mechanical circulatory support. Despite growing interest, the clinical impact of Levosimendan in ECMO remains debated, with heterogeneous evidence regarding its efficacy in improving weaning success, reducing vasopressor requirements or mitigating ischemia-reperfusion injury. This narrative review aims to critically appraise the current literature on Levosimendan use in ECMO settings, exploring its mechanistic rationale, pharmacologic behavior under extracorporeal circulation and potential role in various clinical scenarios including post-cardiotomy shock and refractory cardiogenic failure. The limitations of existing studies are critically examined, underscoring the need for high-quality clinical trials to define appropriate patient selection, optimal timing of administration and dosing strategies. This review synthesizes current evidence to determine whether Levosimendan constitutes a true therapeutic asset or remains merely an adjunctive agent in the complex management of ECMO supported patients. Full article
Show Figures

Graphical abstract

16 pages, 1008 KB  
Review
Not So Benign: Revisiting Pure Membranous Lupus Nephritis
by Martina Uzzo, Marta Calatroni and Gabriella Luisa Moroni
J. Pers. Med. 2025, 15(12), 580; https://doi.org/10.3390/jpm15120580 (registering DOI) - 30 Nov 2025
Abstract
Pure membranous lupus nephritis (pMLN, ISN/RPS-class V) is a rare form of lupus nephritis (LN). Despite being associated with significant comorbidities, it has traditionally been considered a less aggressive subtype. Emerging data challenges this perception, highlighting its potential for chronic kidney disease progression [...] Read more.
Pure membranous lupus nephritis (pMLN, ISN/RPS-class V) is a rare form of lupus nephritis (LN). Despite being associated with significant comorbidities, it has traditionally been considered a less aggressive subtype. Emerging data challenges this perception, highlighting its potential for chronic kidney disease progression and kidney failure. pMLN is pathologically defined by subepithelial immune-complex deposits and typically presents with nephrotic syndrome, preserved renal function, and fewer systemic/immunologic manifestations compared to proliferative LN (ISN/RPS-classes III/IV). Repeat biopsies reveal frequent histological class switching from pMLN to proliferative and mixed LN forms, underscoring the dynamic nature of the disease and the limitations of clinical markers in reflecting histological activity. While the ISN/RPS kidney biopsy classification provides important prognostic insight, it does not fully capture underlying molecular heterogeneity. Recent advances in precision medicine, including proteomic and biomarker studies (e.g., EXT1/2, NCAM1), offer promising tools for patient stratification and tailored treatments. International guidelines now recommend immunosuppressive therapy for pMLN, aligning treatment strategies more closely with those for proliferative and mixed LN. Overall, pMLN should be considered a distinct but clinically relevant LN subtype requiring personalized management based on clinical, histological and molecular features. Long-term monitoring is essential, as baseline presentation does not reliably predict treatment response or disease trajectory. Full article
Show Figures

Figure 1

18 pages, 2610 KB  
Article
Cross-Expression of Thymic and Parathyroid Hormone Receptors Supports the Hypothesis of a Parathyroid–Thymus Port System
by Maria-Paula Comanescu, Otilia Boișteanu, Delia Hînganu, Ludmila Lozneanu, Fabian Cezar Lupu, Roxana Grigorovici, Alexandru Grigorovici, Tiberiu Lunguleac and Marius Valeriu Hînganu
Int. J. Mol. Sci. 2025, 26(23), 11561; https://doi.org/10.3390/ijms262311561 - 28 Nov 2025
Viewed by 19
Abstract
The thymus and parathyroid glands share a common embryological origin from the third pharyngeal pouch, yet their potential morphological and functional interconnections remain insufficiently explored. We conducted a comparative study integrating immunohistochemistry (IHC) and SEM on human thymic tissue, parathyroid adenomas, and parathyroid [...] Read more.
The thymus and parathyroid glands share a common embryological origin from the third pharyngeal pouch, yet their potential morphological and functional interconnections remain insufficiently explored. We conducted a comparative study integrating immunohistochemistry (IHC) and SEM on human thymic tissue, parathyroid adenomas, and parathyroid tissue excised during thyroidectomy. IHC staining targeted Thymosin-α1, CaSR, and PTH1R, with semi-quantitative evaluation of staining intensity and distribution. SEM analysis was performed at multiple magnifications to assess stromal organization and microvascular relief. Non-parametric statistical tests (Kruskal–Wallis with Mann–Whitney post hoc comparisons) were applied to clinical and laboratory data across the three cohorts. Scanning electron microscopy (SEM) revealed convergent ultrastructural features between thymus and parathyroid, including reticular stromal meshes and vascular grooves suggestive of comparable microcirculatory organization. IHC demonstrated robust Thymosin expression in thymus, with heterogeneous/apical distribution in parathyroid tissue; CaSR showed strong membranous and cytoplasmic expression in parathyroid, but weak diffuse signal in thymus; PTH1R exhibited low-to-moderate expression in thymus and moderate heterogeneous expression in parathyroid, with apical accentuation in adenomas. Statistical analysis confirmed significant differences in ionized calcium, PTH, and anti-AChR titers among the three cohorts (all p < 0.001), while TSH and calcitonin did not differ significantly. Our findings strengthen the hypothesis of a morpho-functional parathyroid–thymus axis. The robust parathyroid expression of CaSR and PTH1R aligns with established roles in calcium–PTH homeostasis, while the novel detection of Thymosin in parathyroid tissue suggests an expanded functional repertoire. These results highlight a continuum between embryological proximity and adult tissue cross-talk, with potential clinical implications for parathyroid pathology and immune regulation. Full article
Show Figures

Figure 1

23 pages, 3668 KB  
Article
The Heterogeneous Interplay Between Metabolism and Mitochondrial Activity in Colorectal Cancer
by Christophe Desterke, Yuanji Fu, Jorge Mata-Garrido, Ahmed Hamaï and Yunhua Chang
J. Pers. Med. 2025, 15(12), 571; https://doi.org/10.3390/jpm15120571 - 28 Nov 2025
Viewed by 61
Abstract
Background: Colorectal cancer is a multifactorial malignancy implicating a wide variety of risk factors, such as genetic, environmental, nutritional, and lifestyle factors, leading to a certain heterogeneity in the development of the disease. Colorectal cancer is generally classified in terms of a [...] Read more.
Background: Colorectal cancer is a multifactorial malignancy implicating a wide variety of risk factors, such as genetic, environmental, nutritional, and lifestyle factors, leading to a certain heterogeneity in the development of the disease. Colorectal cancer is generally classified in terms of a Warburg metabolic phenotype, characterized by an excess of glycolytic axes as compared to oxidative phosphorylation. It is therefore important to better characterize the metabolic heterogeneity of these tumors in relation to their mitochondrial activity. Materials and Methods: Two R-packages (keggmetascore and mitoscore) were developed to explore metabolism, based on KEGG metabolism pathways, and mitochondrial activities, based on mitocarta V3 annotations, for the investigation of diverse transcriptomics data such as bulk or single cell experiments at the single-sample level. Results: Using the two R-packages, we functionally confirmed both regulation of metabolism and mitochondrial activities in LOVO cells after stimulation with metformin. At the single-cell level, in single-cell RNA-sequencing of colorectal tumors, we conjointly observed an activation of metabolism and mitochondrial activities in tumor cells from MSI-high tumors, in contrast to a conjoint repression of metabolism and mitochondrial activity in tumor cells from POLE-mutated tumors. These two types of tumors have distinct responses to immune checkpoint blockade therapy. At the bulk transcriptome level, colorectal tumors present less metabolism/mitochondria activities as compared to normal tissues. Multi-modal integration by co-expression network analysis showed that metabolism/mitochondrial activities are associated with a consensus molecular subtype (CMS) classification of colorectal cancer. Regarding KRAS, BRAF, and TP53 driver gene mutation status, strong repression of metabolism pathways was observed, mainly associated with fewer intra-mitochondrial membrane interactions in tumors harboring a BRAF-V600E mutation. Machine learning using Elastic-net allowed us to build a mixed metabolism/mitochondrial activity score, which was found to be increased in the CMS1-MSI subtype and metastatic samples and to be an independent parameter predictive of BRAF-V600E mutation status in colorectal cancer. Conclusions: These findings underscore the pivotal role of mitochondrial metabolism in colorectal cancer subtyping and highlight its value as a predictive biomarker for personalized therapeutic strategies. Full article
(This article belongs to the Special Issue Personalized Medicine for Gastrointestinal Diseases)
Show Figures

Figure 1

22 pages, 3108 KB  
Article
Amyloid β Peptide Modifies Membrane Architecture and Surface Electrostatic Properties of Human Red Blood Cells
by Galya Staneva, Vesela Yordanova, Avgustina Danailova, Ana-Maria Marinovska, András Dér and Stefka G. Taneva
Int. J. Mol. Sci. 2025, 26(23), 11361; https://doi.org/10.3390/ijms262311361 - 24 Nov 2025
Viewed by 242
Abstract
Abnormal accumulation of amyloid-beta (Aβ) peptides in the brain is a hallmark of Alzheimer’s disease (AD). Importantly, the peripheral blood cells are also exposed to the effects of pathological peptides that accumulate in AD. Herein, the interaction of Aβ42 oligomers (Aβ42) with human [...] Read more.
Abnormal accumulation of amyloid-beta (Aβ) peptides in the brain is a hallmark of Alzheimer’s disease (AD). Importantly, the peripheral blood cells are also exposed to the effects of pathological peptides that accumulate in AD. Herein, the interaction of Aβ42 oligomers (Aβ42) with human red blood cells (RBCs) and erythrocyte ghosts as in vitro models for AD is studied combining fluorescence spectroscopy, fluorescence microscopy, and electrokinetics. The binding of Aβ42 to RBCs was evidenced by the use of a fluorescent-labeled peptide. The membrane lipid order increased with the increase in both the Aβ42 concentration and the incubation time, creating a lipid–protein microenvironment characterized by higher molecular order and reduced heterogeneity in RBC membranes compared to control conditions. Notably, the increase in lipid order was less pronounced in erythrocyte ghosts than in intact RBCs. Furthermore, the ζ-potential measurements revealed Aβ42 induced alteration of the surface potential of RBCs in a concentration- and time-dependent manner, with freshly isolated RBCs exhibiting a highly negative potential that became increasingly negative at higher Aβ42 concentrations. These findings suggest that Aβ42 not only impacts neuronal function but also significantly alters the physical properties of RBCs that might compromise their function, potentially contributing to the systemic effects observed in AD. Full article
Show Figures

Figure 1

17 pages, 5897 KB  
Article
3D Breast Cancer Spheroids Reveal Architecture-Dependent HER2 Expression and Signaling
by Pietro Arnaldi, Valentina Delli Zotti, Grazia Bellese, Maria Cristina Gagliani, Paola Orecchia, Patrizio Castagnola and Katia Cortese
Biology 2025, 14(12), 1654; https://doi.org/10.3390/biology14121654 - 24 Nov 2025
Viewed by 327
Abstract
Background: Three-dimensional (3D) culture systems offer a physiologically relevant alternative to monolayers for studying tumor organization, signaling, and drug response. HER2-positive breast cancers (BCa) account for 15–30% of BCa cases and benefit from HER2-targeted therapies, yet predictive in vitro models remain limited. Objective: [...] Read more.
Background: Three-dimensional (3D) culture systems offer a physiologically relevant alternative to monolayers for studying tumor organization, signaling, and drug response. HER2-positive breast cancers (BCa) account for 15–30% of BCa cases and benefit from HER2-targeted therapies, yet predictive in vitro models remain limited. Objective: To generate and compare 3D spheroids from two HER2+ BCa cell lines, SKBR3 and BT474, and investigate how 3D architecture influences HER2 distribution, intracellular signaling, and cellular organization. Methods: Spheroids were reproducibly generated from SKBR3 and BT474 cells and analyzed after 4 days of culture. Cell viability was evaluated using live/dead staining, HER2 distribution was assessed by confocal microscopy and quantified on cryosections, and protein expression/phosphorylation was measured by Western blotting. Epithelial and EMT markers were visualized by immunofluorescence, and ultrastructural features were examined by transmission electron microscopy (TEM). Results: Both cell lines formed viable spheroids with distinct architectures: SKBR3 spheroids were loose and heterogeneous, whereas BT474 spheroids were compact and highly spherical. Confocal and cryosection imaging showed consistent membrane HER2 localization with a progressive signal decrease toward the core of the spheroids, more pronounced in BT474. Western blotting revealed divergent HER2 expression and AKT phosphorylation: SKBR3 spheroids displayed increased HER2 but reduced pAKT, while BT474 spheroids showed reduced HER2 and pAKT levels. EpCAM and E-cadherin staining revealed cell line-specific epithelial organization, and TEM demonstrated differences in intercellular spacing and mitochondrial morphology, reflecting spheroid compactness. Conclusions: 3D architecture profoundly influences HER2 distribution, signaling, and structural organization in HER2+ BCa spheroids. This model provides a robust platform for investigating architecture-dependent molecular processes, with potential applications in drug response, receptor trafficking, and targeted therapy evaluation. Full article
Show Figures

Figure 1

22 pages, 2526 KB  
Article
Untargeted Metabolomics Identifies Faecal Filtrate-Derived Metabolites That Disrupt Clostridioides difficile Metabolism and Confer Gut Barrier Cytoprotection
by Fatimah I. Qassadi, Charlotte Johnson, Karen Robinson, Ruth Griffin, Christos Polytarchou, Dina Kao, Dong-Hyun Kim, Rian L. Griffiths, Zheying Zhu and Tanya M. Monaghan
Int. J. Mol. Sci. 2025, 26(22), 11221; https://doi.org/10.3390/ijms262211221 - 20 Nov 2025
Viewed by 428
Abstract
Recurrent Clostridioides difficile infection (rCDI) remains a major therapeutic challenge. Although faecal microbiota transplantation (FMT) is highly effective and thought to restore microbial composition and metabolic function, the mechanisms underlying its success are not fully understood. In particular, the contribution of non-bacterial components [...] Read more.
Recurrent Clostridioides difficile infection (rCDI) remains a major therapeutic challenge. Although faecal microbiota transplantation (FMT) is highly effective and thought to restore microbial composition and metabolic function, the mechanisms underlying its success are not fully understood. In particular, the contribution of non-bacterial components such as soluble metabolites remains unclear. Therefore, further investigation is needed to identify the mechanistic drivers of FMT efficacy and clarify how non-bacterial factors contribute to therapeutic outcomes. Here, we applied untargeted three-dimensional Orbitrap secondary ion mass spectrometry (3D OrbiSIMS) to profile faecal metabolic reprogramming in rCDI patients pre- and post-FMT, alongside C. difficile cultures exposed to sterile faecal filtrates. FMT induced extensive metabolic shifts, restoring glyoxylate/dicarboxylate and glycerophosphoinositol pathways and normalising disrupted bile acid and amino acid profiles. Faecal filtrate exposure caused strain-specific metabolic disruption in C. difficile, depleting proline, fumarate and succinate while enriching tryptophan. While multiple metabolite classes were profiled, the most significant functional changes were observed in lipids. Lipidomics identified >3.8-fold enrichment of phosphatidylinositol (PI) species, which localised to bacterial membranes and conferred cytoprotection against C. difficile toxins and other epithelial insults. Spatial metabolomics imaging revealed, for the first time, metabolite compartmentalisation within C. difficile, with proline and succinate broadly distributed across the cell surface and fumarate confined to distinct microdomains, highlighting functional heterogeneity in pathogen metabolism. Collectively, these findings demonstrate that soluble metabolites within faecal filtrates mediate pathogen suppression and epithelial barrier protection, establishing metabolite-driven mechanisms underlying FMT efficacy and identifying PI lipids as candidate post-biotic therapeutics for rCDI. Full article
(This article belongs to the Special Issue Interplay Between the Human Microbiome and Diseases)
Show Figures

Figure 1

26 pages, 2269 KB  
Article
Laser Trapping Technique for Measuring Ionization Energy and Identifying Hemoglobin Through Charge Quantification in Blood Samples
by Endris M. Endris, Deresse A. Adem, Horace T. Crogman and Daniel B. Erenso
Biophysica 2025, 5(4), 56; https://doi.org/10.3390/biophysica5040056 - 18 Nov 2025
Viewed by 229
Abstract
We present a proof-of-concept study using a laser trapping (LT) approach to characterize hemoglobin variants through controlled dielectric breakdown of red blood cell membranes. Using a 1064 nm infrared laser, we analyzed 62 cells from each of four hemoglobin types (Hb AS, Hb [...] Read more.
We present a proof-of-concept study using a laser trapping (LT) approach to characterize hemoglobin variants through controlled dielectric breakdown of red blood cell membranes. Using a 1064 nm infrared laser, we analyzed 62 cells from each of four hemoglobin types (Hb AS, Hb FA, Hb FSC, Hb AC), measuring the ionization time, cell area, and trap displacement to calculate the apparent threshold ionization energy (TIE*) and apparent threshold radiation dose (TRD*). Post-ionization trajectories and radiation intensity measurements provided charge distribution profiles for each variant. Our results indicate variant-specific differences in TRD* and charge-to-volume ratios across adults and infants (p < 0.05), while the TIE* values remained largely consistent. Charge analysis revealed statistically significant variation between some groups, suggesting that TRD* and charge-based parameters may offer sensitive markers of hemoglobin heterogeneity. This work demonstrates the feasibility of laser trapping as a complementary single-cell method for hemoglobin analysis. While limited in sample size, the approach highlights the potential of TIE* and TRD* measurements for differentiating hemoglobin variants and suggests future applications in hemoglobinopathy screening and diagnostic research. Full article
(This article belongs to the Special Issue Biophysical Methods to Study Membrane Models, Cells, and Tissues)
Show Figures

Figure 1

25 pages, 5537 KB  
Article
Targeting Prostate Cancer Cells Using Anti-Sortilin and Anti-Syndecan-1 Antibody Drug Conjugates
by Ka Lok Li, Shane M. Hickey, Hugo Albrecht, Jessica M. Logan, Joanna Lazniewska, Courtney R. Moore, Robert D. Brooks, Ian R. D. Johnson, John J. O’Leary and Douglas A. Brooks
Int. J. Mol. Sci. 2025, 26(22), 11145; https://doi.org/10.3390/ijms262211145 - 18 Nov 2025
Viewed by 398
Abstract
Prostate cancer tissue usually involves either well formed glands, poorly formed glands or a combination of the two morphologies, which can be correlated with metabolic differences and tumor heterogeneity. This is particularly important for metastatic castration-resistant prostate cancer, where the heterogeneity and metabolic [...] Read more.
Prostate cancer tissue usually involves either well formed glands, poorly formed glands or a combination of the two morphologies, which can be correlated with metabolic differences and tumor heterogeneity. This is particularly important for metastatic castration-resistant prostate cancer, where the heterogeneity and metabolic changes drive cancer progression and treatment refractory properties. Sortilin and syndecan-1 expression accurately define the two different morphologies in prostate cancer tissue, are critical to the process of metabolic regulation, and exhibit mechanistic/functional interactions during prostate cancer progression. As trans-membrane proteins that recycle from endocytic compartments to the cell surface, sortilin and syndecan-1 are attractive targets for therapeutic intervention that address the two major forms of prostate cancer. In this study, we describe an antibody-drug conjugate (ADC) strategy that utilizes monoclonal antibodies which bind to specific extracellular domains of these integral membrane proteins to elicit anticancer activity in prostate cancer cell lines. Anti-sortilin (clone 11H8) and anti-syndecan-1 (clone 6D11) monoclonal antibodies demonstrated high specificity for epitopes on the extracellular, N-terminal domains of these respective proteins and were effectively internalized into prostate cancer cell endocytic compartments. Monomethyl aurastatin E (MMAE)-conjugated ADCs exhibited low nanomolar cytotoxicity in LNCaP and PC-3 prostate cancer cells. Mechanistically, 11H8-MMAE and 6D11-MMAE triggered cytotoxicity and morphological alterations in androgen-sensitive and androgen-insensitive cells. However, the uptake of fluorescent labelled 11H8 and 6D11 antibodies appeared to be high, whereas the killing capacity of the MMAE-conjugated antibodies was less impressive, suggesting the need for further ADC development. These promising proof-of-concept ADCs are designed to exploit molecular and metabolic vulnerabilities in prostate cancer and may have utility for overcoming treatment resistance by simultaneously targeting different forms of the cancer. Full article
Show Figures

Figure 1

16 pages, 1275 KB  
Article
Serum Extracellular Vesicles as Pathogenetic Signals in Obese and Lean Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease
by Chi-Yi Chen, Che-Yu Hsu, Wei-Pang Chung, Hung-Yu Sun, Tzu-Ching Kao, Tzu-Yi Chen, Xing-Min Li, Wei-Lung Huang and Kung-Chia Young
Metabolites 2025, 15(11), 746; https://doi.org/10.3390/metabo15110746 - 17 Nov 2025
Viewed by 287
Abstract
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is highly prevalent worldwide and represents a growing healthcare challenge due to its risk of progression and association with metabolic comorbidities. Extracellular vesicles (EVs), nanosized membrane-bound particles mediating intercellular communication, have emerged as candidate biomarkers [...] Read more.
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is highly prevalent worldwide and represents a growing healthcare challenge due to its risk of progression and association with metabolic comorbidities. Extracellular vesicles (EVs), nanosized membrane-bound particles mediating intercellular communication, have emerged as candidate biomarkers in multiple diseases. This study aimed to characterize serum EV profiles in MASLD patients, stratified into obese and lean groups using a body mass index cutoff of 23 for Asians. Methods: We enrolled 170 MASLD patients, 83 obese (median age 50, range 20–80) and 87 lean (median age 50, range 20–87), along with 57 non-MASLD controls (median age 44, range 21–86). Serum EV concentrations and particle sizes were quantified using nanoparticle tracking analysis and correlated with clinical and laboratory parameters. EV cargo proteins, including tetraspanins (CD9, CD63) and lipid droplet-associated perilipins (PLIN2, PLIN3), were assessed by Western blotting. Results: Obese MASLD patients displayed marked biochemical abnormalities, whereas lean MASLD patients showed levels comparable to non-MASLD controls. Nevertheless, serum EV concentrations were elevated in both the obese and lean MASLD groups. Importantly, in lean MASLD, EV levels correlated strongly with disruptions in lipid and glycemic homeostasis. Furthermore, a reduction in the PLIN3/CD63 ratio was observed in EVs isolated from lean MASLD patients. Conclusions: Circulating EVs are elevated in both obese and lean MASLD, but lean patients demonstrate a distinctive decrease in the EV PLIN3/CD63 ratio. These findings highlight the potential of EV profiling to uncover disease heterogeneity and to inform risk stratification in MASLD. Full article
(This article belongs to the Section Lipid Metabolism)
Show Figures

Graphical abstract

40 pages, 4425 KB  
Article
Enhancing Power Quality and Reducing Costs in Hybrid AC/DC Microgrids via Fuzzy EMS
by Danilo Pratticò, Filippo Laganà, Mario Versaci, Dubravko Franković, Alen Jakoplić, Saša Vlahinić and Fabio La Foresta
Energies 2025, 18(22), 5985; https://doi.org/10.3390/en18225985 - 14 Nov 2025
Viewed by 333
Abstract
The rapid growth of renewable energy integration in modern power systems brings new challenges in terms of stability and quality of electricity supply. Hybrid AC/DC microgrids represent a promising solution to integrate photovoltaic panels (PV), wind turbines, fuel cells, and storage units with [...] Read more.
The rapid growth of renewable energy integration in modern power systems brings new challenges in terms of stability and quality of electricity supply. Hybrid AC/DC microgrids represent a promising solution to integrate photovoltaic panels (PV), wind turbines, fuel cells, and storage units with flexibility and efficiency. However, maintaining adequate power quality (PQ) under variable conditions of generation, load, and grid connection remains a critical issue. This paper presents the modelling, implementation, and validation of a hybrid AC/DC microgrid equipped with a fuzzy-logic-based energy management system (EMS). The study combines PQ assessment, measurement architecture, and supervisory control for technical compliance and economic efficiency. The microgrid integrates a combination of PV array, wind turbine, proton exchange membrane fuel cell (PEMFC), battery storage system, and heterogeneous AC/DC loads, all modelled in MATLAB/Simulink using a physical-network approach. The fuzzy EMS coordinates distributed energy resources by considering power imbalance, battery state of charge (SOC), and dynamic tariffs. Results demonstrate that the proposed controller maintains PQ indices within IEC/IEEE standards while eliminating short-term continuity events. The proposed EMS prevents harmful deep battery cycles, maintaining SOC within 30–90%, and optimises fuel cell activation, reducing hydrogen consumption by 14%. Economically, daily operating costs decrease by 10–15%, grid imports are reduced by 18%, and renewable self-consumption increases by approximately 16%. These findings confirm that fuzzy logic provides an effective, computationally light, and uncertainty-resilient solution for hybrid AC/DC microgrid EMS, balancing technical reliability with economic optimisation. Future work will extend the framework toward predictive algorithms, reactive power management, and hardware-in-the-loop validation for real-world deployment. Full article
Show Figures

Figure 1

27 pages, 1148 KB  
Review
Antimicrobial Peptides: Current Status, Mechanisms of Action, and Strategies to Overcome Therapeutic Limitations
by Seong Hwan Kim, Yu-Hong Min and Min Chul Park
Microorganisms 2025, 13(11), 2574; https://doi.org/10.3390/microorganisms13112574 - 12 Nov 2025
Viewed by 935
Abstract
Antimicrobial peptides (AMPs), evolutionarily conserved components of the immune system, have attracted considerable attention as promising therapeutic candidates. Derived from diverse organisms, AMPs represent a heterogeneous class of molecules, typically cationic, which facilitates their initial electrostatic interaction with anionic microbial membranes. Unlike conventional [...] Read more.
Antimicrobial peptides (AMPs), evolutionarily conserved components of the immune system, have attracted considerable attention as promising therapeutic candidates. Derived from diverse organisms, AMPs represent a heterogeneous class of molecules, typically cationic, which facilitates their initial electrostatic interaction with anionic microbial membranes. Unlike conventional single-target antibiotics, AMPs utilize rapid, multi-target mechanisms, primarily physical membrane disruption, which results in a significantly lower incidence of resistance emergence. Their broad-spectrum antimicrobial activity, capacity to modulate host immunity, and unique mechanisms of action make them inherently less susceptible to resistance compared with traditional antibiotics. Despite these advantages, the clinical translation of natural AMPs remains limited by several challenges, including poor in vivo stability, and potential cytotoxicity. Bioengineering technology offers innovative solutions to these limitations of AMPs. Two techniques have demonstrated promise: (i) a chimeric recombinant of AMPs with stable scaffold, such as human serum albumin and antibody Fc domain and (ii) chemical modification approaches, such as lipidation. This review provides a comprehensive overview of AMPs, highlighting their origins, structures, and mechanisms of antimicrobial activity, followed by recent advances in bioengineering platforms designed to overcome their therapeutic limitations. By integrating natural AMPs with bioengineering and nanotechnologies, AMPs may be developed into next-generation antibiotics. Full article
(This article belongs to the Collection Feature Papers in Antimicrobial Agents and Resistance)
Show Figures

Figure 1

17 pages, 3944 KB  
Review
Multiscale Imaging of Human Adipose Tissue: A Neglected Partner in Proteinuria Linked to Obesity
by Davide Viggiano, Erica Bortone, Salvatore Tolone, Francesco Saverio Lucido, Claudio Gambardella, Giusiana Nesta, Giuseppe Gigliotti, Michelangelo Nigro, Maddalena Paolicelli, Vittorio D'Orlando and Ludovico Docimo
Biomedicines 2025, 13(11), 2719; https://doi.org/10.3390/biomedicines13112719 - 6 Nov 2025
Viewed by 398
Abstract
Nephrotic syndrome (NS) is a systemic disorder characterized not only by glomerular dysfunction but also by profound dysregulation of lipid metabolism and microvascular integrity. Adipose tissue, as a central lipid-handling and endocrine organ, undergoes structural and functional remodeling in chronic renal conditions yet [...] Read more.
Nephrotic syndrome (NS) is a systemic disorder characterized not only by glomerular dysfunction but also by profound dysregulation of lipid metabolism and microvascular integrity. Adipose tissue, as a central lipid-handling and endocrine organ, undergoes structural and functional remodeling in chronic renal conditions yet remains underexplored in this context. The aim of this manuscript is to integrate adipose tissue imaging into the diagnostic and mechanistic framework of NS. To establish this perspective, we first summarize current knowledge on adipose tissue architecture and imaging in both physiological states and renal disease. We then present a multimodal imaging approach—combining ultrasound (US), histology, and atomic force microscopy (AFM)—applied to human adipose tissue as a potential diagnostic and pathophysiological marker in NS. Original imaging from our laboratory experience is presented as a demonstrative material, complemented by literature synthesis. Given that different modalities of imaging-based characterization of adipose tissue are sparse across the literature, this pictorial review offers a guide to identifying structural biomarkers of adipose remodeling in NS. By bridging imaging modalities with metabolic and vascular perturbations observed in NS, this work aims to guide future research toward the clinical application of adipose tissue imaging in renal disease. This provides insights into cell size heterogeneity, vascular topology, and subcellular features such as membrane wrinkles and nanodomain organization. We propose that such morphometric parameters, accessible via minimally invasive biopsies, could serve as surrogate markers of adipose remodeling in nephrotic syndrome. This sets the stage for integrating adipose tissue imaging into the diagnostic and mechanistic evaluation of systemic features in NS. Full article
Show Figures

Figure 1

31 pages, 3386 KB  
Article
Upgrading Sustainability in Clean Energy: Optimization for Proton Exchange Membrane Fuel Cells Using Heterogeneous Comprehensive Learning Bald Eagle Search Algorithm
by Ahmed K. Ali, Ali Nasser Hussain, Mudhar A. Al-Obaidi and Sarmad Al-Anssari
Sustainability 2025, 17(21), 9729; https://doi.org/10.3390/su17219729 - 31 Oct 2025
Viewed by 266
Abstract
Clean energy applications widely recognize Proton Exchange Membrane Fuel Cells (PEMFCs) for their high efficiency and environmental compatibility. Accurate parameter identification of PEMFC models is essential for enhancing system performance and reliability, particularly under dynamic operating conditions. This paper presents a novel optimization-based [...] Read more.
Clean energy applications widely recognize Proton Exchange Membrane Fuel Cells (PEMFCs) for their high efficiency and environmental compatibility. Accurate parameter identification of PEMFC models is essential for enhancing system performance and reliability, particularly under dynamic operating conditions. This paper presents a novel optimization-based approach called Heterogeneous Comprehensive Learning-Bald Eagle Search (HCLBES) with enhanced exploration and exploitation capabilities for the effective modeling of PEMFC. The algorithm combines the exploration strength of the Bald Eagle Search with comprehensive learning and heterogeneity mechanisms to achieve a balanced global and local search space. In this algorithm, the number of agents is divided into two subagents. Each subagent is assigned to focus solely on either exploration or exploitation. The comprehensive learning strategy generates exemplars for both subgroups. In the exploration sub-agent, exemplars are generated using the personal best experiences of agents within that same exploration space. The exploitation subagent generates the exemplars using the personal best experiences of all agents. This separation preserves exploration diversity even if exploitation converges prematurely. The algorithm is applied to optimize parameters of the 250 W and 500 W PEMFC models under varying conditions. Simulation results demonstrate the outperformance of the HCLBES algorithm in terms of convergence speed, estimation accuracy, and robustness compared to recent optimization algorithms. The effectiveness of HCLBES was also verified through statistical metrics and different commercial PEMFC models, including BCS 500 W stacks, Horizon 500, and NedStack PS6. Experimental validation confirms that the proposed algorithm effectively captures the nonlinear behaviours of PEMFCs under dynamic operating conditions. This research aligns with the Sustainable Development Goals (SDGs) by promoting clean and affordable energy (SDG 7) through the enhanced efficiency and reliability of PEMFCs, thereby supporting sustainable industrialization and innovation (SDG 9). Full article
Show Figures

Figure 1

Back to TopTop