The Influence of Flame Retardants on Combustion of Glass Fiber-Reinforced Epoxy Resin
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Thermal Degradation Analysis
2.3. LOI, UL-94 HB
2.4. Downward Flame Spread Experiments
2.5. Vertical Bunsen Burner Test
3. Numerical
Formulation
4. Results and Discussion
4.1. Results of the TGA, LOI, UL-94 HB and VBB Tests
4.2. Downward Flame Spread over GFRER Composites in Opposed Oxidizer Flow
4.3. Upward Flame Spread over GFRER Composites Impacted by the Attached Flame (VBB)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADC | analog-to-digital converter |
GFRER | Glass fiber-reinforced epoxy resin |
LOI | limiting oxygen index |
TG | thermogravimetry |
DTG | differential thermogravimetric analysis |
Nomenclature | |
C | specific heat capacity (J/kg/K) |
diffusion coefficient (m2/s) | |
activation energy (J/mol) | |
gravity acceleration (m/s2) | |
preexponential factor (s−1) | |
molar mass (g/mol) | |
mass burning rate (g/s) | |
pyrolysis reaction order (−) | |
pressure (Pa) | |
heat release (J/kg) | |
heat flux (W/m2) | |
universal gas constant (J/mol/K) | |
temperature (K) | |
time (s) | |
velocity (m/s) | |
reaction rate (s−1) | |
coordinate along fuel surface (m) | |
gas component mass fraction (−) | |
coordinate normal to fuel surface (m) | |
Greek symbols | |
conversion degree (−) | |
solid component mass fraction (−) | |
burnout degree (−) | |
solid component volume fraction (−) | |
thermal conductivity (W/m/K) | |
dynamic molecular viscosity (kg/m/s) | |
stoichiometric coefficient (−) | |
density (kg/m3) | |
half-thickness (m) | |
inhibition effect coefficient | |
Subscripts | |
ambient | |
binder | |
fuel | |
fiber | |
gas | |
inert component | |
oxidizer | |
product | |
pyrolysis | |
solid | |
Superscripts | |
radiative | |
along fuel surface | |
normal to fuel surface |
References
- Visakh, P.M.; Arao, Y. (Eds.) Engineering Materials. In Flame Retardants: Polymer Blends, Composites and Nanocomposites; Springer International Publishing: Cham, Switzerland, 2015; ISBN 978-3-319-03466-9. [Google Scholar]
- Wang, W.; Pan, H.; Shi, Y.; Pan, Y.; Yang, W.; Liew, K.M.; Song, L.; Hu, Y. Fabrication of LDH Nanosheets on β-FeOOH Rods and Applications for Improving the Fire Safety of Epoxy Resin. Compos. Part Appl. Sci. Manuf. 2016, 80, 259–269. [Google Scholar] [CrossRef]
- Wang, X.; Niu, H.; Guo, W.; Song, L.; Hu, Y. Cardanol as a Versatile Platform for Fabrication of Bio-Based Flame-Retardant Epoxy Thermosets as DGEBA Substitutes. Chem. Eng. J. 2021, 421, 129738. [Google Scholar] [CrossRef]
- Wang, J.; Ma, C.; Wang, P.; Qiu, S.; Cai, W.; Hu, Y. Ultra-Low Phosphorus Loading to Achieve the Superior Flame Retardancy of Epoxy Resin. Polym. Degrad. Stab. 2018, 149, 119–128. [Google Scholar] [CrossRef]
- Gao, T.-Y.; Wang, F.-D.; Xu, Y.; Wei, C.-X.; Zhu, S.-E.; Yang, W.; Lu, H.-D. Luteolin-Based Epoxy Resin with Exceptional Heat Resistance, Mechanical and Flame Retardant Properties. Chem. Eng. J. 2022, 428, 131173. [Google Scholar] [CrossRef]
- Yang, W.; Wu, S.; Yang, W.; Yuen, A.C.-Y.; Zhou, Y.; Yeoh, G.; Boyer, C.; Wang, C.H. Nanoparticles of Polydopamine for Improving Mechanical and Flame-Retardant Properties of an Epoxy Resin. Compos. Part B Eng. 2020, 186, 107828. [Google Scholar] [CrossRef]
- Fenimore, C.P.; Jones, G.W. Phosphorus in the Burnt Gas from Fuel-Rich Hydrogen-Oxygen Flames. Combust. Flame 1964, 8, 133–137. [Google Scholar] [CrossRef]
- Zaikov, G.E.; Lomakin, S.M. Ecological Aspects of Polymer Flame Retardation. Int. J. Polym. Mater. Polym. Biomater. 2000, 47, 61–78. [Google Scholar] [CrossRef]
- Catala, J.-M.; Brossas, J. Synthesis of Fire Retardant Polymers without Halogens. Prog. Org. Coat. 1993, 22, 69–82. [Google Scholar] [CrossRef]
- Bachtiar, E.V.; Kurkowiak, K.; Yan, L.; Kasal, B.; Kolb, T. Thermal Stability, Fire Performance, and Mechanical Properties of Natural Fibre Fabric-Reinforced Polymer Composites with Different Fire Retardants. Polymers 2019, 11, 699. [Google Scholar] [CrossRef]
- Yan, W.; Zhang, M.-Q.; Yu, J.; Nie, S.-Q.; Zhang, D.-Q.; Qin, S.-H. Synergistic Flame-Retardant Effect of Epoxy Resin Combined with Phenethyl-Bridged DOPO Derivative and Graphene Nanosheets. Chin. J. Polym. Sci. 2019, 37, 79–88. [Google Scholar] [CrossRef]
- Wang, P.; Fu, X.; Kan, Y.; Wang, X.; Hu, Y. Two High-Efficient DOPO-Based Phosphonamidate Flame Retardants for Transparent Epoxy Resin. High Perform. Polym. 2019, 31, 249–260. [Google Scholar] [CrossRef]
- Zhi, M.; Liu, Q.; Chen, H.; Chen, X.; Feng, S.; He, Y. Thermal Stability and Flame Retardancy Properties of Epoxy Resin Modified with Functionalized Graphene Oxide Containing Phosphorus and Silicon Elements. ACS Omega 2019, 4, 10975–10984. [Google Scholar] [CrossRef] [PubMed]
- Kashiwagi, T. Polymer Combustion and Flammability—Role of the Condensed Phase. Twenty-Fifth Symp. Int. Combust. 1994, 25, 1423–1437. [Google Scholar] [CrossRef]
- Shahari, S.; Fathullah, M.; Abdullah, M.M.A.B.; Shayfull, Z.; Mia, M.; Budi Darmawan, V.E. Recent Developments in Fire Retardant Glass Fibre Reinforced Epoxy Composite and Geopolymer as a Potential Fire-Retardant Material: A Review. Constr. Build. Mater. 2021, 277, 122246. [Google Scholar] [CrossRef]
- Wang, X.; Song, L.; Pornwannchai, W.; Hu, Y.; Kandola, B. The Effect of Graphene Presence in Flame Retarded Epoxy Resin Matrix on the Mechanical and Flammability Properties of Glass Fiber-Reinforced Composites. Compos. Part Appl. Sci. Manuf. 2013, 53, 88–96. [Google Scholar] [CrossRef]
- Karaer Özmen, F.; Üreyen, M.E.; Koparal, A.S. Cleaner Production of Flame-Retardant-Glass Reinforced Epoxy Resin Composite for Aviation and Reducing Smoke Toxicity. J. Clean. Prod. 2020, 276, 124065. [Google Scholar] [CrossRef]
- Korobeinichev, O.; Karpov, A.; Shaklein, A.; Paletsky, A.; Chernov, A.; Trubachev, S.; Glaznev, R.; Shmakov, A.; Barbot’ko, S. Experimental and Numerical Study of Downward Flame Spread over Glass-Fiber-Reinforced Epoxy Resin. Polymers 2022, 14, 911. [Google Scholar] [CrossRef]
- Kandare, E.; Kandola, B.; Myler, P.; Edwards, G. Thermomechanical Responses of Fiber-Reinforced Epoxy Composites Exposed to High Temperature Environments. Part I: Experimental Data Acquisition. J. Compos. Mater. 2010, 44, 3093–3114. [Google Scholar] [CrossRef]
- Kandare, E.; Kandola, B.K.; McCarthy, E.D.; Myler, P.; Edwards, G.; Jifeng, Y.; Wang, Y.C. Fiber-Reinforced Epoxy Composites Exposed to High Temperature Environments. Part II: Modeling Mechanical Property Degradation. J. Compos. Mater. 2010, 45, 1511–1521. [Google Scholar] [CrossRef]
- Berardi, U.; Meacham, B.J.; Dembsey, N.A.; You, Y.-G. Fire Performance Assessment of a Fiber Reinforced Polymer Wall Panel Used in a Single Family Dwelling. Fire Technol. 2014, 50, 1607–1617. [Google Scholar] [CrossRef]
- Eibl, S. Potential for the Formation of Respirable Fibers in Carbon Fiber Reinforced Plastic Materials after Combustion. Fire Mater. 2017, 41, 808–816. [Google Scholar] [CrossRef]
- Perret, B.; Schartel, B.; Stöß, K.; Ciesielski, M.; Diederichs, J.; Döring, M.; Krämer, J.; Altstädt, V. Novel DOPO-Based Flame Retardants in High-Performance Carbon Fibre Epoxy Composites for Aviation. Eur. Polym. J. 2011, 47, 1081–1089. [Google Scholar] [CrossRef]
- Feng, Y.; He, C.; Wen, Y.; Ye, Y.; Zhou, X.; Xie, X.; Mai, Y.-W. Improving Thermal and Flame Retardant Properties of Epoxy Resin by Functionalized Graphene Containing Phosphorous, Nitrogen and Silicon Elements. Compos. Part Appl. Sci. Manuf. 2017, 103, 74–83. [Google Scholar] [CrossRef]
- Liu, S.; Fang, Z.; Yan, H.; Wang, H. Superior Flame Retardancy of Epoxy Resin by the Combined Addition of Graphene Nanosheets and DOPO. RSC Adv. 2016, 6, 5288–5295. [Google Scholar] [CrossRef]
- Takahashi, S.; bin Borhan, M.A.F.; Terashima, K.; Hosogai, A.; Kobayashi, Y. Flammability Limit of Thin Flame Retardant Materials in Microgravity Environments. Proc. Combust. Inst. 2019, 37, 4257–4265. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Terashima, K.; Oiwa, R.; Tokoro, M.; Takahashi, S. Opposed-Flow Flame Spread over Carbon Fiber Reinforced Plastic under Variable Flow Velocity and Oxygen Concentration: The Effect of in-Plane Thermal Isotropy and Anisotropy. Proc. Combust. Inst. 2021, 38, 4857–4866. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Oiwa, R.; Tokoro, M.; Takahashi, S. Buoyant-Flow Downward Flame Spread over Carbon Fiber Reinforced Plastic in Variable Oxygen Atmospheres. Combust. Flame 2021, 232, 111528. [Google Scholar] [CrossRef]
- Thomsen, M.; Huang, X.; Fernandez-Pello, C.; Urban, D.L.; Ruff, G.A. Concurrent Flame Spread over Externally Heated Nomex under Mixed Convection Flow. Proc. Combust. Inst. 2019, 37, 3801–3808. [Google Scholar] [CrossRef]
- Snegirev, A.Y.; Kuznetsov, E.A.; Korobeinichev, O.P.; Shmakov, A.G.; Trubachev, S.A. Ignition and Burning of the Composite Sample Impacted by the Bunsen Burner Flame: A Fully Coupled Simulation. Fire Saf. J. 2022, 127, 103507. [Google Scholar] [CrossRef]
- Korobeinichev, O.P.; Karpov, A.I.; Bolkisev, A.A.; Shaklein, A.A.; Gonchikzhapov, M.B.; Paletsky, A.A.; Tereshchenko, A.G.; Shmakov, A.G.; Gerasimov, I.E.; Kumar, A. An Experimental and Numerical Study of Thermal and Chemical Structure of Downward Flame Spread over PMMA Surface in Still Air. Proc. Combust. Inst. 2019, 37, 4017–4024. [Google Scholar] [CrossRef]
- Karpov, A.I.; Korobeinichev, O.P.; Shaklein, A.A.; Bolkisev, A.A.; Kumar, A.; Shmakov, A.G. Numerical Study of Horizontal Flame Spread over PMMA Surface in Still Air. Appl. Therm. Eng. 2018, 144, 937–944. [Google Scholar] [CrossRef]
- Shaklein, A.A.; Bolkisev, A.A.; Karpov, A.I.; Korobeinichev, O.P.; Trubachev, S.A. Two-Step Gas-Phase Reaction Model for the Combustion of Polymeric Fuel. Fuel 2019, 255, 115878. [Google Scholar] [CrossRef]
- Korobeinichev, O.; Glaznev, R.; Karpov, A.; Shaklein, A.; Shmakov, A.; Paletsky, A.; Trubachev, S.; Hu, Y.; Wang, X.; Hu, W. An Experimental Study and Numerical Simulation of Horizontal Flame Spread over Polyoxymethylene in Still Air. Fire Saf. J. 2020, 111, 102924. [Google Scholar] [CrossRef]
- Trubachev, S.A.; Korobeinichev, O.P.; Karpov, A.I.; Shaklein, A.A.; Glaznev, R.K.; Gonchikzhapov, M.B.; Paletsky, A.A.; Tereshchenko, A.G.; Shmakov, A.G.; Bespalova, A.S.; et al. The Effect of Triphenyl Phosphate Inhibition on Flame Propagation over Cast PMMA Slabs. Proc. Combust. Inst. 2021, 38, 4635–4644. [Google Scholar] [CrossRef]
- Salmeia, K.A.; Fage, J.; Liang, S.; Gaan, S. An Overview of Mode of Action and Analytical Methods for Evaluation of Gas Phase Activities of Flame Retardants. Polymers 2015, 7, 504–526. [Google Scholar] [CrossRef]
- Buczko, A.; Stelzig, T.; Bommer, L.; Rentsch, D.; Heneczkowski, M.; Gaan, S. Bridged DOPO Derivatives as Flame Retardants for PA6. Polym. Degrad. Stab. 2014, 107, 158–165. [Google Scholar] [CrossRef]
- Schartel, B.; Balabanovich, A.I.; Braun, U.; Knoll, U.; Artner, J.; Ciesielski, M.; Döring, M.; Perez, R.; Sandler, J.K.W.; Altstädt, V.; et al. Pyrolysis of Epoxy Resins and Fire Behavior of Epoxy Resin Composites Flame-Retarded with 9,10-Dihydro-9-Oxa-10-Phosphaphenanthrene-10-Oxide Additives. J. Appl. Polym. Sci. 2007, 104, 2260–2269. [Google Scholar] [CrossRef]
- Inoue, T.; Hayakawa, K.; Suzuki, Y. Thermal Conductivity Measurement of GFRP at Cryogenic Temperature. In Proceedings of the 19th International Conference on Composite Materials, Montréal, QC, Canada, 28 July–2 August 2013. [Google Scholar]
- Ma, C.; Sánchez-Rodríguez, D.; Kamo, T. A Comprehensive Study on the Oxidative Pyrolysis of Epoxy Resin from Fiber/Epoxy Composites: Product Characteristics and Kinetics. J. Hazard. Mater. 2021, 412, 125329. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, C.; Liang, R.; Wang, B. Combustion and Thermal Properties of Epoxy/Phenyltrisilanol Polyhedral Oligomeric Silsesquioxane Nanocomposites. J. Therm. Anal. Calorim. 2010, 100, 1009–1015. [Google Scholar] [CrossRef]
- Korobeinichev, O.P.; Paletsky, A.A.; Gonchikzhapov, M.B.; Glaznev, R.K.; Gerasimov, I.E.; Naganovsky, Y.K.; Shundrina, I.K.; Snegirev, A.Y.; Vinu, R. Kinetics of Thermal Decomposition of PMMA at Different Heating Rates and in a Wide Temperature Range. Thermochim. Acta 2019, 671, 17–25. [Google Scholar] [CrossRef]
- Gao, L.; Zheng, G.; Zhou, Y.; Hu, L.; Feng, G.; Xie, Y. Synergistic Effect of Expandable Graphite, Melamine Polyphosphate and Layered Double Hydroxide on Improving the Fire Behavior of Rosin-Based Rigid Polyurethane Foam. Ind. Crops Prod. 2013, 50, 638–647. [Google Scholar] [CrossRef]
- Zhou, D.; Cheng, Q.-Y.; Cui, Y.; Wang, T.; Li, X.; Han, B.-H. Graphene–Terpyridine Complex Hybrid Porous Material for Carbon Dioxide Adsorption. Carbon 2014, 66, 592–598. [Google Scholar] [CrossRef]
Sample | LOI, % | UL-94 HB with ROS, mm/min | MLR in VBB, g/s | TML in VBB, g | Tmax DTG in Inert, °C |
---|---|---|---|---|---|
GFRER | 22.4 | 44.5, burned out 1 | 0.015 ± 0.002 | 0.51 ± 0.11 | 412 |
GFRER + 6% graphene | 23.9 | 38.3, burned out 1 | 0.010 ± 0.002 | 0.93 ± 0.18 | 411 |
GFRER + 6% DDM-DOPO | 26.5 | 34.9, self-extinguished 1 | 0.010 ± 0.002 | 0.66 ± 0.14 | 407 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korobeinichev, O.; Shaklein, A.; Trubachev, S.; Karpov, A.; Paletsky, A.; Chernov, A.; Sosnin, E.; Shmakov, A. The Influence of Flame Retardants on Combustion of Glass Fiber-Reinforced Epoxy Resin. Polymers 2022, 14, 3379. https://doi.org/10.3390/polym14163379
Korobeinichev O, Shaklein A, Trubachev S, Karpov A, Paletsky A, Chernov A, Sosnin E, Shmakov A. The Influence of Flame Retardants on Combustion of Glass Fiber-Reinforced Epoxy Resin. Polymers. 2022; 14(16):3379. https://doi.org/10.3390/polym14163379
Chicago/Turabian StyleKorobeinichev, Oleg, Artem Shaklein, Stanislav Trubachev, Alexander Karpov, Alexander Paletsky, Anatoliy Chernov, Egor Sosnin, and Andrey Shmakov. 2022. "The Influence of Flame Retardants on Combustion of Glass Fiber-Reinforced Epoxy Resin" Polymers 14, no. 16: 3379. https://doi.org/10.3390/polym14163379
APA StyleKorobeinichev, O., Shaklein, A., Trubachev, S., Karpov, A., Paletsky, A., Chernov, A., Sosnin, E., & Shmakov, A. (2022). The Influence of Flame Retardants on Combustion of Glass Fiber-Reinforced Epoxy Resin. Polymers, 14(16), 3379. https://doi.org/10.3390/polym14163379