Fire Behavior and Failure Model of Multilayered Wood Flour/HDPE/Polycarbonate Composites with a Sandwich Structure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Multilayered Wood Flour/HDPE/PC Composites
2.3. Characterizations of the Resulting Composites
3. Results and Discussion
3.1. Thermal Degradation Behavior of the Resulting Composites
3.2. Inflammability of the Resulting Composites
3.2.1. Single-Layer Wood Flour/HDPE Composites with and without Boric Acid Treatment
3.2.2. Single–Layer Borated Wood Flour/HDPE Composites
3.2.3. Multilayered Wood Flour/HDPE/PC Composites
3.3. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zaaba, N.F.; Ismail, H. Thermoplastic/Natural Filler Composites: A Short Review. J. Phys. Sci. 2019, 30, 81–99. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Stanchev, P.; Katsou, E.; Awad, S.; Fan, M. A circular economy use of recovered sludge cellulose in wood plastic composite production: Recycling and eco-efficiency assessment. Waste Manag. 2019, 99, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Hyvärinen, M.; Ronkanen, M.; Kärki, T. The effect of the use of construction and demolition waste on the mechanical and moisture properties of a wood-plastic composite. Compos. Struct. 2019, 210, 321–326. [Google Scholar] [CrossRef]
- Pantaloni, D.; Melelli, A.; Shah, D.U.; Baley, C.; Bourmaud, A. Influence of water aging on the mechanical properties of flax/PLA non-woven composites. Polym. Degrad. Stab. 2022, 200, 109957. [Google Scholar] [CrossRef]
- Friedrich, D. Thermoplastic moulding of Wood-Polymer Composites (WPC): A review on physical and mechanical behavior under hot-pressing technique. Compos. Struct. 2021, 262, 113649. [Google Scholar] [CrossRef]
- Sun, L.; Wu, Q.; Xie, Y.; Wang, F.; Wang, Q. Thermal degradation and flammability properties of multilayer structured wood fiber and polypropylene composites with fire retardants. RSC Adv. 2016, 6, 13890–13897. [Google Scholar] [CrossRef]
- Mingzhu, P.; Hailan, L.; Changtong, M. Flammability of nano silicon dioxide–wood fiber–polyethylene composites. J. Compos. Mater. 2013, 47, 1471–1477. [Google Scholar] [CrossRef]
- Liu, L.; Qian, M.; Song, P.A.; Huang, G.; Yu, Y.; Fu, S. Fabrication of green lignin-based flame retardants for enhancing the thermal and fire retardancy properties of polypropylene/wood composites. ACS Sustain. Chem. Eng. 2016, 4, 2422–2431. [Google Scholar] [CrossRef]
- Sun, L.; Xie, Y.; Ou, R.; Guo, C.; Hao, X.; Wu, Q.; Wang, Q. The influence of double-layered distribution of fire retardants on the fire retardancy and mechanical properties of wood fiber polypropylene composites. Constr. Build. Mater. 2020, 242, 118047. [Google Scholar] [CrossRef]
- Uner, I.H.; Deveci, I.; Baysal, E.; Turkoglu, T.; Toker, H.; Peker, H. Thermal analysis of Oriental beech wood treated with some borates as fire retardants. Maderas. Cienc. Tecnol. 2016, 18, 293–304. [Google Scholar] [CrossRef]
- Donmez Cavdar, A.; Mengeloğlu, F.; Karakus, K. Effect of boric acid and borax on mechanical, fire and thermal properties of wood flour filled high density polyethylene composites. Measurement 2015, 60, 6–12. [Google Scholar] [CrossRef]
- Gwon, J.G.; Lee, S.Y.; Kim, J.H. Thermal degradation behavior of polypropylene base wood plastic composites hybridized with metal (aluminum, magnesium) hydroxides. J. Appl. Polym. Sci. 2014, 131, 40120.1–40120.7. [Google Scholar] [CrossRef]
- Fang, Y.; Wang, Q.; Guo, C.; Song, Y.; Cooper, P.A. Effect of zinc borate and wood flour on thermal degradation and fire retardancy of Polyvinyl chloride (PVC) composites. J. Anal. Appl. Pyrolysis 2013, 100, 230–236. [Google Scholar] [CrossRef]
- Zhao, P.; Guo, C.; Li, L. Exploring the effect of melamine pyrophosphate and aluminum hypophosphite on flame retardant wood flour/polypropylene composites. Constr. Build. Mater. 2018, 170, 193–199. [Google Scholar] [CrossRef]
- Xu, B.-R.; Deng, C.; Li, Y.-M.; Lu, P.; Zhao, P.-P.; Wang, Y.-Z. Novel amino glycerin decorated ammonium polyphosphate for the highly-efficient intumescent flame retardance of wood flour/polypropylene composite via simultaneous interfacial and bulk charring. Compos. Part B Eng. 2019, 172, 636–648. [Google Scholar] [CrossRef]
- Stark, N.M.; White, R.H.; Mueller, S.A.; Osswald, T.A. Evaluation of various fire retardants for use in wood flour–polyethylene composites. Polym. Degrad. Stab. 2010, 95, 1903–1910. [Google Scholar] [CrossRef]
- Naumann, A.; Seefeldt, H.; Stephan, I.; Braun, U.; Noll, M. Material resistance of flame retarded wood-plastic composites against fire and fungal decay. Polym. Degrad. Stab. 2012, 97, 1189–1196. [Google Scholar] [CrossRef]
- Yu, F.; Xu, F.; Song, Y.; Fang, Y.; Zhang, Z.; Wang, Q.; Wang, F. Expandable graphite’s versatility and synergy with carbon black and ammonium polyphosphate in improving antistatic and fire-retardant properties of wood flour/polypropylene composites. Polym. Compos. 2017, 38, 767–773. [Google Scholar] [CrossRef]
- Pan, M.; Mei, C.; Du, J.; Li, G. Synergistic effect of nano silicon dioxide and ammonium polyphosphate on flame retardancy of wood fiber–polyethylene composites. Compos. Part A Appl. Sci. Manuf. 2014, 66, 128–134. [Google Scholar] [CrossRef]
- Matuana, L.M.; Jin, S.; Stark, N.M. Ultraviolet weathering of HDPE/wood-flour composites coextruded with a clear HDPE cap layer. Polym. Degrad. Stab. 2011, 96, 97–106. [Google Scholar] [CrossRef]
- Butylina, S.; Martikka, O.; Kärki, T. Weathering properties of coextruded polypropylene-based composites containing inorganic pigments. Polym. Degrad. Stab. 2015, 120, 10–16. [Google Scholar] [CrossRef]
- Hao, X.; Zhou, H.; Xie, Y.; Mu, H.; Wang, Q. Sandwich-structured wood flour/HDPE composite panels: Reinforcement using a linear low-density polyethylene core layer. Constr. Build. Mater. 2018, 164, 489–496. [Google Scholar] [CrossRef]
- Zong, G.; Hao, X.; Hao, J.; Tang, W.; Fang, Y.; Ou, R.; Wang, Q. High-strength, lightweight, co-extruded wood flour-polyvinyl chloride/lumber composites: Effects of wood content in shell layer on mechanical properties, creep resistance, and dimensional stability. J. Clean. Prod. 2020, 244, 118860. [Google Scholar] [CrossRef]
- Sun, L.; Wu, Q.; Xie, Y.; Song, K.; Lee, S.; Wang, Q. Thermal decomposition of fire-retarded wood flour/polypropylene composites. J. Therm. Anal. Calorim. 2015, 123, 309–318. [Google Scholar] [CrossRef]
- Wu, Q.; Chi, K.; Wu, Y.; Lee, S. Mechanical, thermal expansion, and flammability properties of co-extruded wood polymer composites with basalt fiber reinforced shells. Mater. Des. 2014, 60, 334–342. [Google Scholar] [CrossRef]
- Javaid, A.; Hashmi, S. Development of the Fire-Retardant Truss Core Sandwich Structures Using Carbon Fiber Reinforced Epoxy Composites. Fire Technol. 2022, 58, 1493–1507. [Google Scholar] [CrossRef]
- Javaid, A.; Ashraf, H.T.; Mustaghees, M.; Khalid, A. Fire-retardant carbon/glass fabric-reinforced epoxy sandwich composites for structural applications. Polym. Compos. 2021, 42, 45–56. [Google Scholar] [CrossRef]
- Bagotia, N.; Choudhary, V.; Sharma, D. Synergistic effect of graphene/multiwalled carbon nanotube hybrid fillers on mechanical, electrical and EMI shielding properties of polycarbonate/ethylene methyl acrylate nanocomposites. Compos. Part B Eng. 2019, 159, 378–388. [Google Scholar] [CrossRef]
- Mariano, M.; El Kissi, N.; Dufresne, A. Melt processing of cellulose nanocrystal reinforced polycarbonate from a masterbatch process. Eur. Polym. J. 2015, 69, 208–223. [Google Scholar] [CrossRef]
- Feng, J.; Hao, J.; Du, J.; Yang, R. Flame retardancy and thermal properties of solid bisphenol A bis (diphenyl phosphate) combined with montmorillonite in polycarbonate. Polym. Degrad. Stab. 2010, 95, 2041–2048. [Google Scholar] [CrossRef]
- Fuina, S.; Marano, G.C.; Scarascia-Mugnozza, G. Polycarbonate laminates thermo-mechanical behaviour under different operating temperatures. Polym. Test. 2019, 76, 344–349. [Google Scholar] [CrossRef]
- Zhang, J.; Koubaa, A.; Xing, D.; Liu, W.; Wang, H.; Wang, X.; Wang, Q. High-performance lignocellulose/polycarbonate biocomposites fabricated by in situ reaction: Structure and properties. Compos. Part A Appl. Sci. Manuf. 2020, 138, 106068. [Google Scholar] [CrossRef]
- Wang, Q.; Li, J. The fire-retardant mechanism of fire-retardant FRW for Wood. Sci. Silvae Sin. 2005, 41, 123–126. [Google Scholar]
- Zhang, J.; Koubaa, A.; Xing, D.; Wang, H.; Wang, Y.; Liu, W.; Zhang, Z.; Wang, X.; Wang, Q. Conversion of lignocellulose into biochar and furfural through boron complexation and esterification reactions. Bioresour. Technol. 2020, 312, 123586. [Google Scholar] [CrossRef]
- Di Blasi, C.; Branca, C.; Galgano, A. Flame retarding of wood by impregnation with boric acid—Pyrolysis products and char oxidation rates. Polym. Degrad. Stab. 2007, 92, 752–764. [Google Scholar] [CrossRef]
- Tascioglu, C.; Umemura, K.; Yoshimura, T. Seventh-year durability evaluation of zinc borate incorporated wood-plastic composites and particleboard. Compos. Part B Eng. 2018, 137, 123–128. [Google Scholar] [CrossRef]
- Dufresne, A. Cellulose nanomaterials as green nanoreinforcements for polymer nanocomposites. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2018, 376, 20170040. [Google Scholar] [CrossRef]
- Mu, B.; Wang, H.; Hao, X.; Wang, Q. Morphology, Mechanical Properties and Dimensional Stability of Biomass Particles/High Density Polyethylene Composites: Effect of Species and Composition. Polymers 2018, 10, 308. [Google Scholar] [CrossRef] [Green Version]
Samples | Wood Flour (wt.%) | HDPE (wt.%) | MAPE (wt.%) |
---|---|---|---|
WPC30 | 30 | 66 | 4 |
WPC40 | 40 | 56 | 4 |
WPC50 | 50 | 46 | 4 |
WPC60 | 60 | 36 | 4 |
Samples | TTI (s) | THR (MJ∙m−2) | PHRR (kW∙m−2) | TSP (m2∙kg−1) |
---|---|---|---|---|
Wood flour/HDPE composites | 48 (±5.0) | 98.7 (±0.2) | 578.1 (±7.9) | 7.1 (±0.8) |
Borated wood flour/HDPE composites | 46 (±2.0) | 97.7 (±1.1) | 562.7 (±27.8) | 7.2 (±0.3) |
Multilayered WPCs | 63.7 (±1.2) | 78.8 (±1.2) | 395.5 (±18.7) | 19.2 (±0.85) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Koubaa, A.; Xing, D.; Wang, H.; Tao, Y.; Wang, X.-M.; Li, P. Fire Behavior and Failure Model of Multilayered Wood Flour/HDPE/Polycarbonate Composites with a Sandwich Structure. Polymers 2022, 14, 2833. https://doi.org/10.3390/polym14142833
Zhang J, Koubaa A, Xing D, Wang H, Tao Y, Wang X-M, Li P. Fire Behavior and Failure Model of Multilayered Wood Flour/HDPE/Polycarbonate Composites with a Sandwich Structure. Polymers. 2022; 14(14):2833. https://doi.org/10.3390/polym14142833
Chicago/Turabian StyleZhang, Jingfa, Ahmed Koubaa, Dan Xing, Haigang Wang, Yubo Tao, Xiang-Ming Wang, and Peng Li. 2022. "Fire Behavior and Failure Model of Multilayered Wood Flour/HDPE/Polycarbonate Composites with a Sandwich Structure" Polymers 14, no. 14: 2833. https://doi.org/10.3390/polym14142833
APA StyleZhang, J., Koubaa, A., Xing, D., Wang, H., Tao, Y., Wang, X.-M., & Li, P. (2022). Fire Behavior and Failure Model of Multilayered Wood Flour/HDPE/Polycarbonate Composites with a Sandwich Structure. Polymers, 14(14), 2833. https://doi.org/10.3390/polym14142833