Advanced “Green” Prebiotic Composite of Bacterial Cellulose/Pullulan Based on Synthetic Biology-Powered Microbial Coculture Strategy
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Vitro Assessment of Prebiotic Properties of Microbial Polysaccharides with Lactobacillus rhamnosus GG
2.2. Preparation of BC/PUL Composite
2.3. Preparation of BC
2.4. Preparation of PUL
2.5. Detection of PUL Content in BC/PUL Composite
2.6. Characterization of BC/PUL Composite
2.6.1. Fourier Transformed Infrared (FT-IR) Spectroscopy
2.6.2. Scanning Electron Microscopy (SEM)
2.6.3. Mechanical Characterization
2.7. Statistical Analysis
3. Results
3.1. The Effect of Microbial Polysaccharides on the Growth of L. rhamnosus GG
3.2. Cocultivation of BC and PUL Producers on a Modified Medium with Molasses
4. Conclusions
- (1)
- Two or more types of microorganisms are cultivated, stored, and reused together. The growth of all microbial species involved and the production of material components can be achieved under the same conditions. The nutrient medium, temperature, pH, etc. can be kept constant throughout the biosynthetic process.
- (2)
- A biocomposite product can be obtained through a smaller number of pretreatment and purification stages.
- (3)
- Optimization of the fermentation conditions of the coculture system improves the overall production of cellulose film in the presence of PUL in the culture medium. All this makes the biocomposite production technologically more efficient and simpler.
- (4)
- The bio- and green composites obtained via cocultivation of BC- and PUL-producers have improved mechanical properties in terms of tensile strength and elasticity as compared with the individual biopolymers.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ul-Islam, M.; Khan, S.; Ullah, M.W.; Park, J.K. Bacterial cellulose composites: Synthetic strategies and multiple applications in bio-medical and electro-conductive fields. Biotechnol. J. 2015, 10, 1847–1861. [Google Scholar] [CrossRef] [PubMed]
- Olsson, R.T.; Samir, M.A.; Salazar-Alvarez, G.; Belova, L.; Ström, V.; Berglund, L.A.; Ikkala, O.; Nogués, J.; Gedde, U.W. Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat. Nanotechnol. 2010, 5, 584–588. [Google Scholar] [CrossRef] [PubMed]
- Jin, K.; Jin, C.; Wu, Y. Synthetic Biology-powered microbial co-culture strategy and application of bacterial cellulose-based composite materials. Carbohydr. Polym. 2022, 283, 119171. [Google Scholar] [CrossRef] [PubMed]
- Saska, S.; Barud, H.S.; Gaspar, A.M.; Marchetto, R.; Ribeiro, S.J.; Messaddeq, Y. Bacterial cellulose-hydroxyapatite nanocomposites for bone regeneration. Int. J. Biomater. 2011, 2011, 175362. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.; Ul-Islam, M.; Khattak, W.A.; Park, J.K. Overview of bacterial cellulose composites: A multipurpose advanced material. Carbohydr. Polym. 2013, 98, 585–598. [Google Scholar] [CrossRef]
- Prudnikova, S.V.; Shidlovsky, I.P. The new strain of acetic acid bacteria Komagataeibacter xylinus B-12068—Producer of bacterial cellulose for biomedical applications. J. Siber. Feder. Univ. Biol. 2017, 10, 246–254. [Google Scholar] [CrossRef]
- Bodin, A.; Bäckdahl, H.; Petersen, N.; Gatenholm, P. 2.223 Bacterial Cellulose as Biomaterial. In Comprehensive Biomaterials; Ducheyne, P., Ed.; Elsevier: Oxford, UK, 2011; Volume 2, pp. 405–410. ISBN 978-0-080-55294-1. [Google Scholar]
- Esa, F.; Tasirin, S.M.; Rahman, N.A. Overview of bacterial cellulose production and application. Agric. Agric. Sci. Procedia 2014, 2, 113–119. [Google Scholar] [CrossRef]
- Bielecki, S.; Krystynowicz, A.; Turkiewicz, M.; Kalinowska, H. Bacterial Cellulose. In Polysaccharides and Polyamides in the Food Industry; Steinbuüchel, A., Rhee, S.K., Eds.; Wiley-VCH Verlag: Weinheim, Germany, 2005; Volume 1, pp. 31–85. ISBN 978-3-527-31345-7. [Google Scholar]
- Lee, J.W.; Na, D.; Park, J.M.; Lee, J.; Choi, S.; Lee, S.Y. Systems Metabolic Engineering of microorganisms for natural and non-natural chemicals. Nat. Chem. Biol. 2012, 8, 536–546. [Google Scholar] [CrossRef]
- Choi, S.; Song, C.W.; Shin, J.H.; Lee, S.Y. Biorefineries for the production of top building block chemicals and their derivatives. Metab. Eng. 2015, 28, 223–239. [Google Scholar] [CrossRef]
- Chen, C.; Ding, W.; Zhang, H.; Zhang, L.; Huang, Y.; Fan, M.; Yang, J.; Sun, D. Bacterial cellulose-based biomaterials: From fabrication to application. Carbohydr. Polym. 2022, 278, 118995. [Google Scholar] [CrossRef]
- Żywicka, A.; Wenelska, K.; Junka, A.; Chodaczek, G.; Szymczyk, P.; Fijałkowski, K. Immobilization pattern of morphologically different microorganisms on bacterial cellulose membranes. World J. Microbiol. Biotechnol. 2019, 35, 11. [Google Scholar] [CrossRef] [PubMed]
- Sulaeva, I.; Henniges, U.; Rosenau, T.; Potthast, A. Bacterial cellulose as a material for wound treatment: Properties and modifications. A Review. Biotechnol. Adv. 2015, 33, 1547–1571. [Google Scholar] [CrossRef] [PubMed]
- Horii, F.; Hirai, A.; Yamamoto, H. Microstructural analysis of microfibrils of bacterial cellulose. Macromol. Symp. 1997, 120, 197–205. [Google Scholar] [CrossRef]
- Ul-Islam, M.; Khan, T.; Park, J.K. Nanoreinforced bacterial cellulose–montmorillonite composites for biomedical applications. Carbohydr. Polym. 2012, 89, 1189–1197. [Google Scholar] [CrossRef]
- Vu, C.M.; Nguyen, D.D.; Sinh, L.H.; Pham, T.D.; Pham, L.T.; Choi, H.J. Environmentally benign green composites based on epoxy resin/bacterial cellulose reinforced glass fiber: Fabrication and mechanical characteristics. Polym. Test. 2017, 61, 150–161. [Google Scholar] [CrossRef]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert consensus document: The International Scientific Association for Probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef]
- Markowiak, P.; Śliżewska, K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef]
- Farias, D.; de Araújo, F.F.; Neri-Numa, I.A.; Pastore, G.M. Prebiotics: Trends in food, health and Technological Applications. Trends Food Sci. Technol. 2019, 93, 23–35. [Google Scholar] [CrossRef]
- Ruiz-Moreno, M.J.; Muñoz-Redondo, J.M.; Cuevas, F.J.; Marrufo-Curtido, A.; León, J.M.; Ramírez, P.; Moreno-Rojas, J.M. The influence of pre-fermentative maceration and ageing factors on ester profile and marker determination of Pedro Ximenez Sparkling Wines. Food Chem. 2017, 230, 697–704. [Google Scholar] [CrossRef]
- Gibson, G.R.; Scott, K.P.; Rastall, R.A.; Tuohy, K.M.; Hotchkiss, A.; Dubert-Ferrandon, A.; Gareau, M.; Murphy, E.F.; Saulnier, D.; Loh, G.; et al. Dietary prebiotics: Current status and new definition. Trends Food Sci. Technol. 2010, 7, 1–19. [Google Scholar] [CrossRef]
- Moreira, M.R.; Tomadoni, B.; Martín-Belloso, O.; Soliva-Fortuny, R. Preservation of fresh-cut Apple Quality attributes by pulsed light in combination with gellan gum-based prebiotic edible coatings. LWT Food Sci. Tech. 2015, 64, 1130–1137. [Google Scholar] [CrossRef]
- Sadek, Z.I.; El-Shafei, K.; Murad, H.A. Utilization of xanthan gum and inulin as prebiotics for lactic acid bacteria. Dtsch. Lebensmitt. Rundsch. 2006, 102, 109–114. [Google Scholar]
- Gao, M.; Li, H.; Yang, T.; Li, Z.; Hu, X.; Wang, Z.; Jiang, Y.; Zhu, L.; Zhan, X. Production of prebiotic gellan oligosaccharides based on the irradiation treatment and acid hydrolysis of gellan gum. Carbohydr. Polym. 2022, 279, 119007. [Google Scholar] [CrossRef]
- Xu, J.; Wang, R.; Zhang, H.; Wu, J.; Zhu, L.; Zhan, X. In vitro assessment of prebiotic properties of oligosaccharides derived from four microbial polysaccharides. LWT Food Sci. Technol. 2021, 147, 111544. [Google Scholar] [CrossRef]
- Causse, B.; Spadini, L.; Martins, J.M.F.; Lenoir, T.; Heyraud, A.; Delolme, C. Xanthan exopolysaccharide: Acid–base reactivity related to structure and conformation. A model for understanding the reactivity of degraded and colloidal soil organic matter. Chem. Geol. 2013, 359, 150–158. [Google Scholar] [CrossRef]
- Karlton-Senaye, B.D.; Ibrahim, S.A. Impact of gums on the growth of probiotic microorganisms. In Proceedings of the 2013 National Conference on Advances in Environmental Science and Technology, Greensboro, NC, USA, 12 September 2013; pp. 165–170. [Google Scholar] [CrossRef]
- Pandey, S.; Shreshtha, I.; Sachan, S.G. Pullulan: Biosynthesis, Production and Applications. In Microbial Exopolysaccharides as Novel and Significant Biomaterials; Nadda, A.K., Sajna, K.V., Sharma, S., Eds.; Springer: Cham, Switzerland, 2021; pp. 121–141. ISBN 978-3-030-75289-7. [Google Scholar]
- Sugawa-Katayama, Y.; Kondou, F.; Mandai, T.; Yoneyama, M.; Sugimoto, S. Effects of pullulan, polydextrose and pectin on cecal microflora. J. Appl. Glycosci. 1994, 41, 413–418. [Google Scholar] [CrossRef]
- Capurso, L. Thirty Years of Lactobacillus rhamnosus GG. J. Clin. Gastroenter. 2019, 53, S1–S41. [Google Scholar] [CrossRef]
- Bruzzese, E.; Fedele, M.C.; Bruzzese, D.; Viscovo, S.; Giannattasio, A.; Mandato, C.; Siani, P.; Guarino, A. Randomised clinical trial: A lactobacillus GG and micronutrient-containing mixture is effective in reducing nosocomial infections in children, vs. placebo. Aliment. Pharmac. Therapeut. 2016, 44, 568–575. [Google Scholar] [CrossRef]
- Huebner, J.; Wehling, R.L.; Hutkins, R.W. Functional activity of commercial prebiotics. Int. Dairy J. 2007, 17, 770–775. [Google Scholar] [CrossRef]
- Corcoran, B.M.; Stanton, C.; Fitzgerald, G.F.; Ross, R.P. Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Appl. Environ. Microbiol. 2005, 71, 3060–3067. [Google Scholar] [CrossRef]
- Naganuma, T.; Iinuma, Y.; Nishiwaki, H.; Murase, R.; Masaki, K.; Nakai, R. Enhanced Bacterial Growth and Gene Expression of D-Amino Acid Dehydrogenase With D-Glutamate as the Sole Carbon Source. Front. Microbiol. 2018, 9, 2097. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Fleming, H.P.; McFeeters, R.F. Differential Glucose and Fructose Utilization During Cucumber Juice Fermentation. J. Food Sci. 2001, 66, 162–166. [Google Scholar] [CrossRef]
- Faria, S.; Petkowicz, C.; Morais, S.; Terrones, M.; Resende, M.; França, F.; Cardoso, V. Characterization of xanthan gum produced from sugar cane broth. Carbohydr. Polym. 2011, 86, 469–476. [Google Scholar] [CrossRef]
- Silva, S.S.; Fernandes, E.; Pina, S.; Silva-Correia, J.; Vieira, S.; Oliveira, J.; Reis, R. 2.11 Polymers of Biological Origin. In Comprehensive Biomaterials; Ducheyne, P., Ed.; Elsevier: Oxford, UK, 2017; Volume 2, pp. 228–252. ISBN 978-0-081-00692-4. [Google Scholar]
- Gietl, E.; Mengerink, W.; de Slegte, J.; Gibson, G.; Rastall, R.; van den Heuvel, E. Factors Involved in the In Vitro Fermentability of Short Carbohydrates in Static Faecal Batch Cultures. Int. Carbohydr. Chem. 2012, 2012, 197809. [Google Scholar] [CrossRef]
- Nelios, G.; Santarmaki, V.; Pavlatou, C.; Dimitrellou, D.; Kourkoutas, Y. New Wild-Type Lacticaseibacillus rhamnosus Strains as Candidates to Manage Type 1 Diabetes. Microorganisms 2022, 10, 272. [Google Scholar] [CrossRef]
- Smith, K.A.; Salyers, A.A. Characterization of a neopullulanase and an alpha-glucosidase from Bacteroides thetaiotaomicron 95-1. J. Bacteriol. 1991, 173, 2962–2968. [Google Scholar] [CrossRef]
- Stewart, M.L.; Timm, D.A.; Slavin, J.L. Fructooligosaccharides exhibit more rapid fermentation than long-chain inulin in an in vitro fermentation system. Nutr. Res. 2008, 28, 329–334. [Google Scholar] [CrossRef]
- Rubel, I.A.; Pérez, E.E.; Genovese, D.B.; Manrique, G.D. In vitro prebiotic activity of inulin-rich carbohydrates extracted from Jerusalem artichoke (Helianthus tuberosus L.) tubers at different storage times by Lactobacillus paracasei. Food Res. Int. 2014, 62, 59–65. [Google Scholar] [CrossRef]
- Leathers, T.D. Biotechnological production and applications of Pullulan. Appl. Microbiol. Biotechnol. 2003, 62, 468–473. [Google Scholar] [CrossRef]
- Kycia, K.; Chlebowska-Śmigiel, A.; Szydłowska, A.; Sokół, E.; Ziarno, M.; Gniewosz, M. Pullulan as a potential enhancer of lactobacillus and bifidobacterium viability in synbiotic low fat yoghurt and its sensory quality. LWT Food Sci. Technol. 2020, 128, 109414. [Google Scholar] [CrossRef]
- Chlebowska-Śmigiel, A.; Gniewosz, M.; Kieliszek, M.; Bzducha-Wrobel, A. The effect of Pullulan on the growth and acidifying activity of selected stool microflora of human. Curr. Pharm. Biotechnol. 2017, 18, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Chlebowska-Śmigiel, A.; Kycia, K.; Neffe-Skocińska, K.; Kieliszek, M.; Gniewosz, M.; Kołożyn-Krajewska, D. Effect of pullulan on physicochemical, microbiological, and sensory quality of yogurts. Curr. Pharm. Biotechnol. 2019, 20, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Catchmark, J.M. Bacterial cellulose/hyaluronic acid nanocomposites production through co-culturing gluconacetobacter hansenii and Lactococcus lactis under different initial ph values of fermentation media. Cellulose 2020, 27, 2529–2540. [Google Scholar] [CrossRef]
- Ding, R.; Hu, S.; Xu, M.; Hu, Q.; Jiang, S.; Xu, K.; Tremblay, P.-L.; Zhang, T. The facile and controllable synthesis of a bacterial cellulose/polyhydroxybutyrate composite by co-culturing Gluconacetobacter Xylinus and Ralstonia Eutropha. Carbohydr. Polym. 2021, 252, 117137. [Google Scholar] [CrossRef]
- Gao, G.; Fan, H.; Zhang, Y.; Cao, Y.; Li, T.; Qiao, W.; Wu, M.; Ma, T.; Li, G. Production of nisin-containing bacterial cellulose nanomaterials with antimicrobial properties through co-culturing Enterobacter sp. FY-07 and Lactococcus Lactis N8. Carbohydr. Polym. 2021, 251, 117131. [Google Scholar] [CrossRef]
- Gromovykh, T.I.; Gavryushina, I.A.; Sadykova, V.S.; Feldman, N.B.; Dmitrenok, A.S.; Ayrapetova, A.Y. Obtaining immobilized mycelium of basidiomycete fomitopsis officinalis (Vill.:FR.) bond. et sing., producer of agaricic acid. Antibiot. Chemoth. 2018, 63, 3–9. (In Russian) [Google Scholar]
- Hu, H.; Catchmark, J.M.; Demirci, A. Effects of pullulan additive and co-culture of Aureobasidium pullulans on bacterial cellulose produced by Komagataeibacter hansenii. Bioprocess. Biosyst. Eng. 2022, 45, 573–587. [Google Scholar] [CrossRef]
- Shokatayeva, D.; Ignatova, L.; Savitskaya, I.; Kistaubaeva, A.; Talipova, A.; Asylbekova, A.; Abdulzhanova, M.; Mashzhan, A. Bacterial cellulose and pullulan from simple and low cost production media. Euras. Chem. Technol. J. 2019, 21, 247. [Google Scholar] [CrossRef]
- Revin, V.; Liyaskina, E.; Nazarkina, M.; Bogatyreva, A.; Shchankin, M. Cost-effective production of bacterial cellulose using acidic food industry by-products. Braz. J. Microbiol. 2018, 49, 151–159. [Google Scholar] [CrossRef]
- Fang, L.; Catchmark, J.M. Characterization of water-soluble exopolysaccharides from Gluconacetobacter Xylinus and their impacts on bacterial cellulose crystallization and ribbon assembly. Cellulose 2014, 21, 3965–3978. [Google Scholar] [CrossRef]
- Gao, G.; Cao, Y.; Zhang, Y.; Wu, M.; Ma, T.; Li, G. In situ production of bacterial cellulose/xanthan gum nanocomposites with enhanced productivity and properties using Enterobacter sp. FY-07. Carbohydr. Polym. 2020, 248, 116788. [Google Scholar] [CrossRef] [PubMed]
- Senthamilselvi, S.; Kumar, P.; Prabha, A.L.; Govindaraju, M. Green simplistic biosynthesis of anti-bacterial silver nanoparticles using Annona squamosa leaf extract. Nano Biomed. 2013, 5, 102–106. [Google Scholar] [CrossRef]
- Sambandam, B.; Arivarasan, A. Extraction and isolation of flavonoid quercetin from the leaves of Trigonella foenum-graecum and their anti-oxidant activity. Int. J. Pharm. 2016, 8, 120–124. [Google Scholar]
- Chandu, B.; Mosali, V.S.; Mullamuri, B.; Bollikolla, H.B. A facile green reduction of graphene oxide using Annona squamosa leaf extract. Carbon Lett. 2017, 21, 74–80. [Google Scholar] [CrossRef]
- Zahoor, M.; Shafiq, S.; Ullah, H.; Sadiq, A.; Ullah, F. Isolation of quercetin and mandelic acid from Aesculus indica fruit and their biological activities. BMC Biochem. 2018, 19, 5. [Google Scholar] [CrossRef]
- Kunjiappan, S.; Chowdhury, R.; Bhattacharjee, C. Isolation and structural elucidation of flavonoids from aquatic fern Azolla microphylla and evaluation of free radical scavenging activity. Int. J. Pharm. 2013, 5, 743–749. [Google Scholar]
- Fatima, A.; Yasir, S.; Khan, M.S.; Manan, S.; Ullah, M.W.; Ul-Islam, M. Plant extract-loaded bacterial cellulose composite membrane for potential biomedical applications. J. Bioresour. Bioprod. 2021, 6, 26–32. [Google Scholar] [CrossRef]
- Zhao, W.; Sugunan, A.; Gillgren, T.; Larsson, J.A.; Zhang, Z.-B.; Zhang, S.-L.; Sommertune, J.; Dobryden, I.; Ahniyaz, A. Surfactant-free starch-graphene composite films as simultaneous oxygen and water vapour barriers. NPJ 2D Mater. 2022, 6, 20. [Google Scholar] [CrossRef]
- Liu, D.; Cao, Y.; Qu, R.; Gao, G.; Chen, S.; Zhang, Y.; Wu, M.; Ma, T.; Li, G. Production of bacterial cellulose hydrogels with tailored crystallinity from Enterobacter sp. FY-07 by the controlled expression of colanic acid synthetic genes. Carbohydr. Polym. 2019, 207, 563–570. [Google Scholar] [CrossRef]
- Hu, H.; Catchmark, J.M.; Demirci, A. Co-culture fermentation on the production of bacterial cellulose nanocomposite produced by Komagataeibacter Hansenii. Carbohydr. Polym. Technol. Appl. 2021, 2, 100028. [Google Scholar] [CrossRef]
Strain | Substrate | log10 CFU/mL | Difference (24 h–0 h) | |
---|---|---|---|---|
0 h | 24 h | |||
L. rhamnosus GG | GG | 6.03 ± 0.24 | 7.74 ± 0.28 | 1.71 |
PUL | 6.23 ± 0.23 | 8.02 ± 0.33 | 1.79 | |
XG | 5.92 ± 0.15 | 7.54 ± 0.21 | 1.62 | |
Glucose | 6.44 ± 0.22 | 8.19 ± 0.34 | 1.75 | |
E. coli | GG | 6.22 ± 0.25 | 7.85 ± 0.29 | 1.63 |
PUL | 5.34 ± 0.18 | 6.85 ± 0.25 | 1.51 | |
XG | 5.83 ± 0.14 | 7.63 ± 0.27 | 1.80 | |
Glucose | 5.74 ± 0.17 | 7.95 ± 0.28 | 2.21 |
Glucose Medium | Molasses Medium | |||
---|---|---|---|---|
Productivity, g/L | Film Thickness, mm | Productivity, g/L | Film Thickness, mm | |
K. xylinus (BC) | 4.6 ± 0.26 | 4.0 ± 0.21 | 10.8 ± 0.64 | 8.0 ± 0.47 |
A. pullulans (PUL) | 8.2 ± 0.51 | - | 10.3 ± 0.54 | - |
K. xylinus + A. pullulans (BC/PUL) | 10.12 ± 0.62 | 7.0 ± 0.37 | 16.8 ± 0.88 | 12.0 ± 0.67 |
PUL after BC/PUL digestion with cellulase | 3.2 ± 0.18 | - | 6.7 ± 0.32 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhantlessova, S.; Savitskaya, I.; Kistaubayeva, A.; Ignatova, L.; Talipova, A.; Pogrebnjak, A.; Digel, I. Advanced “Green” Prebiotic Composite of Bacterial Cellulose/Pullulan Based on Synthetic Biology-Powered Microbial Coculture Strategy. Polymers 2022, 14, 3224. https://doi.org/10.3390/polym14153224
Zhantlessova S, Savitskaya I, Kistaubayeva A, Ignatova L, Talipova A, Pogrebnjak A, Digel I. Advanced “Green” Prebiotic Composite of Bacterial Cellulose/Pullulan Based on Synthetic Biology-Powered Microbial Coculture Strategy. Polymers. 2022; 14(15):3224. https://doi.org/10.3390/polym14153224
Chicago/Turabian StyleZhantlessova, Sirina, Irina Savitskaya, Aida Kistaubayeva, Ludmila Ignatova, Aizhan Talipova, Alexander Pogrebnjak, and Ilya Digel. 2022. "Advanced “Green” Prebiotic Composite of Bacterial Cellulose/Pullulan Based on Synthetic Biology-Powered Microbial Coculture Strategy" Polymers 14, no. 15: 3224. https://doi.org/10.3390/polym14153224
APA StyleZhantlessova, S., Savitskaya, I., Kistaubayeva, A., Ignatova, L., Talipova, A., Pogrebnjak, A., & Digel, I. (2022). Advanced “Green” Prebiotic Composite of Bacterial Cellulose/Pullulan Based on Synthetic Biology-Powered Microbial Coculture Strategy. Polymers, 14(15), 3224. https://doi.org/10.3390/polym14153224