Synthesis and Study of Physical and Mechanical Properties of Urethane-Containing Elastomers Based on Epoxyurethane Oligomers with Controlled Crystallinity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Synthesis
2.1.1. Materials
2.1.2. Synthesis of OTMO-Diamines
2.1.3. Synthesis of Epoxyurethane Oligomers
2.1.4. Polymer Synthesis
2.2. Methods
2.2.1. 1H- and 13C-NMR Spectroscopy
2.2.2. Elemental Analysis
2.2.3. Gel Permeation Chromatography
2.2.4. FTIR Spectroscopy
2.2.5. Differential Scanning Calorimetry (DSC)
2.2.6. Mechanical Tests
3. Results
3.1. NMR Spectra of Functionalized Oligotetramethylene Oxides
3.2. Elemental Analysis
3.3. Gel Permeation Chromatography of Functionalized Oligotetramethylene Oxides
3.4. FTIR Spectroscopy
3.4.1. FTIR Spectra of Functionalized Oligotetramethylene Oxides
3.4.2. FTIR Spectra of the Synthesized Elastomers
3.5. Differential Scanning Calorimetry Data
3.6. Deformation and Strength Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bahl, S.; Nagar, H.; Singh, I.; Sehgal, S. Smart materials types, properties and applications: A review. Mater. Today Proc. 2020, 28, 1302–1306. [Google Scholar] [CrossRef]
- Shahinpoor, M. Fundamentals of Smart Materials; Royal Society of Chemistry: London, UK, 2020. [Google Scholar]
- Cheng, F.; Liang, J.; Tao, Z.; Chen, J. Functional Materials for Rechargeable Batteries. Adv. Mater. 2011, 23, 1695–1715. [Google Scholar] [CrossRef] [PubMed]
- Cornwell, D.J.; Smith, D.K. Expanding the scope of gels—Combining polymers with low-molecular-weight gelators to yield modified self-assembling smart materials with high-tech applications. Mater. Horiz. 2015, 2, 279–293. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.V.; Rahman, A.; Kumar, N.S.; Aditi, A.; Galluzzi, M.; Bovio, S.; Barozzi, S.; Montani, E.; Parazzoli, D. Bio-inspired approaches to design smart fabrics. Mater. Des. 2012, 36, 829–839. [Google Scholar] [CrossRef]
- Leonardi, A.B.; Fasce, L.A.; Zucchi, I.; Hoppe, C.E.; Soulé, E.R.; Perez, C.J.; Williams, R.J. Shape memory epoxies based on networks with chemical and physical crosslinks. Eur. Polym. J. 2011, 47, 362–369. [Google Scholar] [CrossRef]
- Xiao, X.; Kong, D.; Qiu, X.; Zhang, W.; Liu, Y.; Zhang, S.; Zhang, F.; Hu, Y.; Leng, J. Shape memory polymers with high and low temperature resistant properties. Sci. Rep. 2015, 5, 14137. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.H.; Zhang, Z.C.; Luo, C.J.; Lin, I.-T.; Liu, Y.; Leng, J.; Smoukov, S.K. Remote, fast actuation of programmable multiple shape memory composites by magnetic fields. J. Mater. Chem. C 2015, 3, 11290–11293. [Google Scholar] [CrossRef]
- Xiao, R.; Guo, J.; Safranski, D.L.; Nguyen, T.D. Solvent-driven temperature memory and multiple shape memory effects. Soft Matter 2015, 11, 3977–3985. [Google Scholar] [CrossRef]
- Dong, Y.; Xia, H.; Zhu, Y.; Ni, Q.-Q.; Fu, Y. Effect of epoxy-graft-polyoxyethylene octyl phenyl ether on preparation, mechanical properties and triple-shape memory effect of carbon nanotube/water-borne epoxy nanocomposites. Compos. Sci. Technol. 2015, 120, 17–25. [Google Scholar] [CrossRef]
- Dong, Y.; Ni, Q.-Q.; Fu, Y. Preparation and characterization of water-borne epoxy shape memory composites containing silica. Compos. Part A Appl. Sci. Manuf. 2015, 72, 1–10. [Google Scholar] [CrossRef]
- Lendlein, A.; Langer, R. Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications. Science 2002, 296, 1673–1676. [Google Scholar] [CrossRef]
- Zarek, M.; Layani, M.; Cooperstein, I.; Sachyani, E.; Cohn, D.; Magdassi, S. 3D Printing of Shape Memory Polymers for Flexible Electronic Devices. Adv. Mater. 2015, 28, 4449–4454. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zhu, Y.; Huang, H.; Lu, J. Recent advances in shape–memory polymers: Structure, mechanism, functionality, modeling and applications. Prog. Polym. Sci. 2012, 37, 1720–1763. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, W.; Xie, J.; Liu, Y. Thermoelectric Responsive Shape Memory Graphene/Hydro-Epoxy Composites for Actuators. Micromachines 2016, 7, 145. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Meng, H.; Li, G.; Ibekwe, S.I. A review of stimuli-responsive polymers for smart textile applications. Smart Mater. Struct. 2012, 21, 053001. [Google Scholar] [CrossRef]
- Akindoyo, J.O.; Beg, M.D.H.; Ghazali, S.; Islam, M.R.; Jeyaratnam, N.; Yuvaraj, A.R. Polyurethane types, synthesis and applications—A review. RSC Adv. 2016, 6, 114453–114482. [Google Scholar] [CrossRef] [Green Version]
- Kojio, K.; Nozaki, S.; Takahara, A.; Yamasaki, S. Influence of chemical structure of hard segments on physical properties of polyurethane elastomers: A review. J. Polym. Res. 2020, 27, 140. [Google Scholar] [CrossRef]
- Shokrolahi, F.; Yeganeh, H. Soft segment composition and its influence on phase-separated morphology of PCL/PEG-based poly(urethane urea)s. Iran. Polym. J. 2014, 23, 505–512. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, C.; Zhang, W.; Zhang, H.; Hou, Z. Synthesis and properties of biodegradable poly(ester-urethane)s based on poly(ε-caprolactone) and aliphatic diurethane diisocyanate for long-term implant application: Effect of uniform-size hard segment content. J. Biomater. Sci. Polym. Ed. 2019, 30, 1212–1226. [Google Scholar] [CrossRef]
- Hou, Z.; Xu, J.; Teng, J.; Jia, Q.; Wang, X. Facile preparation of medical segmented poly(ester-urethane) containing uniformly sized hard segments and phosphorylcholine groups for improved hemocompatibility. Mater. Sci. Eng. C 2019, 109, 110571. [Google Scholar] [CrossRef]
- Kasprzyk, P.; Benes, H.; Donato, R.K.; Datta, J. The role of hydrogen bonding on tuning hard-soft segments in bio-based thermoplastic poly(ether-urethane)s. J. Clean. Prod. 2020, 274, 122678. [Google Scholar] [CrossRef]
- Tereshatov, V.V.; Makarova, M.; Senichev, V.Y.; Volkova, E.; Vnutskikh, Z.A.; Slobodinyuk, A.I. The role of the soft phase in the hardening effect and the rate dependence of the ultimate physico-mechanical properties of urethane-containing segmented elastomers. Colloid Polym. Sci. 2014, 293, 153–164. [Google Scholar] [CrossRef]
- Xiao, M.; Zhang, N.; Zhuang, J.; Sun, Y.; Ren, F.; Zhang, W.; Hou, Z. Degradable Poly(ether-ester-urethane)s Based on Well-Defined Aliphatic Diurethane Diisocyanate with Excellent Shape Recovery Properties at Body Temperature for Biomedical Application. Polymers 2019, 11, 1002. [Google Scholar] [CrossRef] [Green Version]
- Slobodinyuk, A.; Strelnikov, V.; Senichev, V.Y.; Slobodinyuk, D. Preparation, Structure and Properties of Urethane-Containing Elastomers Based on Epoxy Terminal Oligomers. Polymers 2022, 14, 524. [Google Scholar] [CrossRef] [PubMed]
- Doğan, M.; Unlu, S.M. Flame retardant effect of boron compounds on red phosphorus containing epoxy resins. Polym. Degrad. Stab. 2014, 99, 12–17. [Google Scholar] [CrossRef]
- Levchik, S.; Piotrowski, A.; Weil, E.; Yao, Q. New developments in flame retardancy of epoxy resins. Polym. Degrad. Stab. 2005, 88, 57–62. [Google Scholar] [CrossRef]
- Izadi, M.; Mardani, H.; Roghani-Mamaqani, H.; Salami-Kalajahi, M.; Khezri, K. Hyperbranched Poly(amidoamine)-Grafted Graphene Oxide as a Multifunctional Curing Agent for Epoxy-Terminated Polyurethane Composites. ChemistrySelect 2021, 6, 2692–2699. [Google Scholar] [CrossRef]
- Slobodinyuk, A.; Strelnikov, V.; Kiselkov, D.; Slobodinyuk, D. Synthesis of oligotetramethylene oxides with terminal amino groups as curing agents for an epoxyurethane oligomer. Z. Nat. B 2021, 76, 511–515. [Google Scholar] [CrossRef]
- Byczyński, L.; Dutkiewicz, M.; Maciejewski, H. Synthesis and properties of high-solids hybrid materials obtained from epoxy functional urethanes and siloxanes. Prog. Org. Coat. 2015, 84, 59–69. [Google Scholar] [CrossRef]
- Wang, J.-S.; Liu, Y.; Zhao, H.-B.; Liu, J.; Wang, D.-Y.; Song, Y.-P.; Wang, Y.-Z. Metal compound-enhanced flame retardancy of intumescent epoxy resins containing ammonium polyphosphate. Polym. Degrad. Stab. 2009, 94, 625–631. [Google Scholar] [CrossRef]
- Yan, J.; Marina, P.; Blencowe, A. A Facile Strategy for the High Yielding, Quantitative Conversion of Polyglycol End-Groups to Amines. Polymers 2021, 13, 1403. [Google Scholar] [CrossRef] [PubMed]
- Brandl, F.; Henke, M.; Rothschenk, S.; Gschwind, R.; Breunig, M.; Blunk, T.; Tessmar, J.; Göpferich, A. Poly(Ethylene Glycol) Based Hydrogels for Intraocular Applications. Adv. Eng. Mater. 2007, 9, 1141–1149. [Google Scholar] [CrossRef]
- Chenault, H.K. Method for Preparing Multi-Arm Poly(Ethylene Glycol) Amines. U.S. Patent 7 868 132, 11 January 2011. [Google Scholar]
- Marcduval, J.; Delestre, C.; Carré, M.; Hubert, P.; Dellacherie, E. Synthesis and characterization of some covalent dextran-polyoxyethyleneglycol derivatives. Carbohydr. Polym. 1991, 15, 233–242. [Google Scholar] [CrossRef]
- Harris, J.M.; Struck, E.C.; Case, M.G.; Paley, M.S.; Yalpani, M.; Van Alstine, J.M.; Brooks, D.E. Synthesis and characterization of poly(ethylene glycol) derivatives. J. Polym. Sci. Polym. Chem. Ed. 1984, 22, 341–352. [Google Scholar] [CrossRef]
- Wang, L.; Wang, S.; Bei, J.Z. Synthesis and characterization of macroinitiator-amino terminated PEG and poly (γ-benzyl-l-glutamate)-PEO-poly (γ-benzyl-l-glutamate) triblock copolymer. Polym. Adv. Technol. 2004, 15, 617–621. [Google Scholar] [CrossRef]
- Yeganeh, H.; Lakouraj, M.M.; Jamshidi, S. Synthesis and characterization of novel biodegradable epoxy-modified polyurethane elastomers. J. Polym. Sci. Part A Polym. Chem. 2005, 43, 2985–2996. [Google Scholar] [CrossRef]
- Lee, H.; Neville, K. Handbook of Epoxy Resins; McGraw-Hill: New York, NY, USA, 1967. [Google Scholar]
- Guadagno, L.; Vertuccio, L.; Sorrentino, A.; Raimondo, M.; Naddeo, C.; Vittoria, V.; Iannuzzo, G.; Calvi, E.; Russo, S. Mechanical and barrier properties of epoxy resin filled with multi-walled carbon nanotubes. Carbon 2009, 47, 2419–2430. [Google Scholar] [CrossRef]
- Stefani, P.M.; Moschiar, S.M.; Aranguren, M.I. Epoxy-urethane copolymers: Relation between morphology and properties. J. Appl. Polym. Sci. 2001, 82, 2544–2552. [Google Scholar] [CrossRef]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed.; Wiley: New York, NY, USA, 2004. [Google Scholar]
- Strel’Nikov, V.N.; Senichev, V.Y.; Slobodinyuk, A.I.; Savchuk, A.V.; Volkova, E.R.; Makarova, M.A.; Nechaev, A.I.; Krasnosel’Skikh, S.F.; Ukhin, K.O. Preparation and Properties of Frost-Resistant Room-Temperature-Curable Compounds Based on Oligoethertetraurethane Diepoxides of Various Chemical Structures. Russ. J. Appl. Chem. 2018, 91, 463–468. [Google Scholar] [CrossRef]
Product Code | Molecular Weight of Initial EUO OTMO | Diisocyanate Type | Content of Free Isocyanate Groups, wt % | Content of Free Epoxy Groups, wt % | ||
---|---|---|---|---|---|---|
Calculated | Determined | Calculated | Determined | |||
FP-1 | 1008 | 2,4-toluene diisocyanate | 6.23 | 6.31 ± 0.03 | 5.82 | 5.71 ± 0.03 |
FP-2 | 1008 | isophorone diisocyanate | 5.82 | 5.85 ± 0.03 | 5.43 | 5.31 ± 0.03 |
FP-3 | 1400 | 2,4-toluene diisocyanate | 4.81 | 4.92 ± 0.03 | 4.64 | 4.72 ± 0.03 |
FP-4 | 1400 | isophorone diisocyanate | 4.56 | 4.62 ± 0.03 | 4.37 | 4.45 ± 0.03 |
FP-5 | 2000 | 2,4-toluene diisocyanate | 3.57 | 3.65 ± 0.03 | 3.51 | 3.47 ± 0.03 |
FP-6 | 2000 | isophorone diisocyanate | 3.43 | 3.53 ± 0.03 | 3.54 | 3.45 ± 0.03 |
Composition Code | Oligomer Code | Curing Agent |
---|---|---|
C-1 | FP-1 | OTMODA 1000 |
C-2 | FP-3 | OTMODA 1000 |
C-3 | FP-5 | OTMODA 1000 |
C-4 | FP-1 | OTMODA 1400 |
C-5 | FP-3 | OTMODA 1400 |
C-6 | FP-5 | OTMODA 1400 |
C-7 | FP-2 | OTMODA 1000 |
C-8 | FP-4 | OTMODA 1000 |
C-9 | FP-6 | OTMODA 1000 |
C-10 | FP-2 | OTMODA 1400 |
C-11 | FP-4 | OTMODA 1400 |
C-12 | FP-6 | OTMODA 1400 |
C, % | H, % | N, % | ||||
---|---|---|---|---|---|---|
Founded | Calculated | Founded | Calculated | Founded | Calculated | |
OTMO-dibromide (Mn = 1134 g/mol) | 58.41 | 58.20 | 9.87 | 9.70 | - | - |
OTMO-dibromide (Mn = 1526 g/mol) | 60.58 | 60.38 | 10.19 | 10.06 | - | - |
OTMO-diphtalimide (Mn = 1266 g/mol) | 67.48 | 67.30 | 9.49 | 9.32 | 2.37 | 2.21 |
OTMO-diphtalimide (Mn = 1658 g/mol) | 67.32 | 67.15 | 9.90 | 9.74 | 1.84 | 1.69 |
OTMO-diamines (Mn = 1006 g/mol) | 65.75 | 65.61 | 11.46 | 11.33 | 2.90 | 2.78 |
OTMO-diamines (Mn = 1398 g/mol) | 66.05 | 65.90 | 11.40 | 11.27 | 2.17 | 2.00 |
Mn 1 | Mn 2 | |||
---|---|---|---|---|
GPC | 1H | GPC | 1H | |
OTMO-dibromide | 1121 (5.105 *) | 1134 | 1480 (5.550 *) | 1526 |
OTMO-diphtalimide | 1250 (5.265 *) | 1266 | 1640 (5.748 *) | 1658 |
OTMO-diamines | 1020 (4.980 *) | 1006 | 1380 (5.426 *) | 1398 |
Composition Code | Glass Transition Temperature of the Soft Phase, °C | Melting Temperature of the Soft Phase, °C |
---|---|---|
C-1 | −63 | 29 |
C-2 | −61 | 29 |
C-3 | −59 | 29 |
C-4 | −63 | 29 |
C-5 | −65 | 29 |
C-6 | −64 | 29 |
C-7 | −67 | - |
C-8 | −66 | 30 |
C-9 | −65 | 30 |
C-10 | −73 | 30 |
C-11 | −71 | 30 |
C-12 | −70 | 30 |
Composition Code | σk, MPa | εk, % | E100, MPa |
---|---|---|---|
C-1 | 6.2 ± 0.3 | 175 ± 7 | 5.3 ± 0.3 |
C-2 | 6.1 ± 0.3 | 196 ± 7 | 5.7 ± 0.3 |
C-3 | 6.3 ± 0.3 | 224 ± 7 | 6.0 ± 0.3 |
C-4 | 6.1 ± 0.3 | 115 ± 5 | 5.8 ± 0.3 |
C-5 | 7.2 ± 0.4 | 121 ± 5 | 6.0 ± 0.3 |
C-6 | 6.9 ± 0.3 | 141 ± 5 | 6.2 ± 0.3 |
C-7 | 6.5 ± 0.3 | 205 ± 7 | 4.1 ± 0.2 |
C-8 | 10.2 ± 0.5 | 221 ± 7 | 4.2 ± 0.2 |
C-9 | 9.3 ± 0.4 | 256 ± 10 | 4.6 ± 0.2 |
C-10 | 6.2 ± 0.3 | 196 ± 7 | 4.9 ± 0.2 |
C-11 | 6.4 ± 0.3 | 206 ± 7 | 5.0 ± 0.3 |
C-12 | 7.0 ± 0.3 | 261 ± 10 | 5.5 ± 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slobodinyuk, A.; Strelnikov, V.; Elchisheva, N.; Kiselkov, D.; Slobodinyuk, D. Synthesis and Study of Physical and Mechanical Properties of Urethane-Containing Elastomers Based on Epoxyurethane Oligomers with Controlled Crystallinity. Polymers 2022, 14, 2136. https://doi.org/10.3390/polym14112136
Slobodinyuk A, Strelnikov V, Elchisheva N, Kiselkov D, Slobodinyuk D. Synthesis and Study of Physical and Mechanical Properties of Urethane-Containing Elastomers Based on Epoxyurethane Oligomers with Controlled Crystallinity. Polymers. 2022; 14(11):2136. https://doi.org/10.3390/polym14112136
Chicago/Turabian StyleSlobodinyuk, Alexey, Vladimir Strelnikov, Nadezhda Elchisheva, Dmitriy Kiselkov, and Daria Slobodinyuk. 2022. "Synthesis and Study of Physical and Mechanical Properties of Urethane-Containing Elastomers Based on Epoxyurethane Oligomers with Controlled Crystallinity" Polymers 14, no. 11: 2136. https://doi.org/10.3390/polym14112136
APA StyleSlobodinyuk, A., Strelnikov, V., Elchisheva, N., Kiselkov, D., & Slobodinyuk, D. (2022). Synthesis and Study of Physical and Mechanical Properties of Urethane-Containing Elastomers Based on Epoxyurethane Oligomers with Controlled Crystallinity. Polymers, 14(11), 2136. https://doi.org/10.3390/polym14112136