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Abstract: The influence of the molecular weight of oligoamine, oligoether, and the type of diisocyanate
on the physical and mechanical properties of elastomers with urethane hydroxyl hard segments was
studied. For this purpose, oligoetherdiamines with molecular weights ~1008 and ~1400 g mol−1

were synthesized by a three-stage method. Epoxyurethane oligomers were synthesized according to
a two-step route with an oligodiisocyanate as an intermediate product. A series of 12 elastomers with
controlled crystallinity were synthesized from these elastomers and amines. The deformation and
strength properties of the elastomers were studied.

Keywords: curing agent; epoxyurethane oligomer; oligotetramethylene oxide diol; synthesis;
bromination; Gabriel reaction

1. Introduction

Smart materials are the next generation of functional materials, after natural, man-
made, and synthetic materials [1,2]. These high-tech materials combine the advantages of
structural and functional materials [3–5].

Shape memory polymers (SMPs) are a type of smart materials that can recover from a
deformed temporary shape to a “memorized” permanent shape in response to an external
environmental stimulus, for example, light, temperature, solvent, pH, electrical or mag-
netic field [6–10]. Shape-memory polymers can be both thermoplastic and thermosetting
ones. The mechanical properties, thermal stability, fixation ratio, and recovery rate of the
thermosets are higher than those of the thermoplastics [11]. At present, these polymers are
used in aerospace structures and biomedical devices [12–16].

Recently, segmented polyurethanes have been increasingly considered as shape mem-
ory materials. This class of polymers is characterized by a high shape recovery ability,
controlled shape recovery temperature, high stress–strain properties, wear resistance,
and biocompatibility.

In general, segmented urethane-containing elastomers (SUE), such as polyurethanes
and polyurethane ureas, can be considered to be a unique class of polymers. The structure
and properties of these polymers can be regulated over a wide range [17]. Segmented
polyurethanes (SPU) and polyurethane ureas (SPUM) are block copolymers with macro-
molecular chains consisting of the alternating soft and hard segments, SS and HS, respec-
tively. Hard segments are formed as a result of the reaction of a diisocyanate with low
molecular weight chain extenders, such as diamines and diols. The soft segment structure
is determined by the oligomers used in the synthesis of an SUE [18].

The difference in the polarity of soft and hard segments results in the microphase
separation followed by the formation of hard domains [19–21]. In the microdomains, the
hydrogen bonds play an important role in the stabilization of the hard phase structure [22].
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Solid domains act as a reinforcing filler. These domains are in the nodes of a specific
physical network stable in a wide range of positive temperatures [23].

It should be noted that the shape memory effect of polyurethane elastomers is largely
dependent on the degree of crystallinity and hydrogen bonds of the polymer, as well as
its microphase separation [24]. These parameters can be varied by using polyesters with
different molecular weights, different types of diisocyanates, etc.

Despite all the advantages of polyurethanes and polyurethane ureas, the deformation
and strength properties of these elastomers depend on humidity. This is due to the ability
of the terminal isocyanate groups, present in oligodiisocyanates, to react with water. To
solve this problem, isocyanate groups should be “blocked” by some reactive substance.
From this point of view, the most promising reactants are epoxy alcohols, for example,
2,3-epoxy-1-propanol [25]. In this case, the isocyanate group of the oligodiisocyanate reacts
with the hydroxyl group of 2,3-epoxy-1-propanol to provide an epoxyurethane oligomer.
In addition, the toxicity of isocyanate terminal compounds is substantially reduced. For
the elastomers based on these oligomers, no deterioration of the stress–strain properties is
observed when subjected to humidity. Amines, anhydrides of dicarboxylic acids, carboxyl-
containing compounds, and imidazoles are used as curing agents for epoxyurethane
oligomers [26–31].

The epoxyurethane elastomers are characterized by high dielectric properties and
mechanical characteristics, and, not least, their properties are independent of humidity.

The elastomers, synthesized using polyester-based epoxyurethane elastomers, are
crystallizable [25] and can be used as shape memory materials. However, the use of
these materials at low temperatures is limited by a high glass transition temperature of
−30–40 ◦C.

The glass transition temperature of polyether-based epoxyurethane elastomers is up
to −72–74 ◦C. Thus, at a low temperature, it is advisable to use this class of elastomers.
However, these elastomers are non-crystallizable, and this property limits the use of these
polymers as shape memory materials.

In our opinion, for the preparation of crystallizable polyether-based elastomers, linear
oligomer curing agents should be used.

In literature, a wide variety of synthetic methods for oligoethylene glycol diamine have
been described, and the synthesis of oligopropylene glycol diamine (trademark Jeffamine)
is also well-developed. Such oligomers can be prepared from oligoglycols by a variety of
synthetic routes. The most common synthetic route is a three-step procedure that includes
mesylation, azidation, and reduction [32]. In addition, in [33], another preparation method
for oligoether diamines is described. According to this procedure, amino terminated
oligomers can be prepared via the two-step route: substitution of oligoglycol hydroxyls
with phthalimide moieties, followed by the hydrazinolysis reaction. Synthetic methods for
oligoetherdiamines, including the step of catalytic amination under elevated pressure and
temperature conditions, have been also studied [34,35]. As reported by J. M. Harris and
colleagues, oligoethylene glycol diamine was synthesized via oxidation of oligoethylene
glycol followed by reduction of carbonyl compound [36]. In our opinion, the elastomers
cured with these amines are likely to be non-crystallizable. In the first case, when using
methyl branched Jeffamine, it is due to the steric hindrance, and in the second—to high
oxygen content.

In the present paper, the elastomers cured with oligoamine, synthesized from olig-
otetramethylene oxide diol, are studied. The authors consider this oligoamine to be the
most promising curing agent for the preparation of crystallizable elastomers based on
epoxyurethane oligomers.

The aim of the present study was the preparation and characterization of cold-resistant
crystallizable elastomers. Four epoxy-terminated oligomers based on oligotetramethylene
oxide diols of different molecular weights were synthesized. A novel synthetic method for
oligoamines was developed. Two amino terminated oligomers with molecular weights
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of 1000 and 1400 were used as curing agents. The elastomers based on oligoethers and
oligoamines were synthesized and characterized.

2. Materials and Methods
2.1. Materials and Synthesis
2.1.1. Materials

Phosphorus tribromide 99% (Sigma-Aldrich Co., St. Louis, MO, USA), Phthalimide
potassium salt 98% (Sigma-Aldrich Co., St. Louis, MO, USA), Hydrazine monohydrate
98% (Sigma-Aldrich Co., St. Louis, MO, USA), 2,4-toluene diisocyanate (TDI) (BASF,
Ludwigshafen, Germany), isophorone diisocyanate (IPDI) (Evonik Chemistry Ltd., Essen,
Germany), oligotetramethylene oxide diol (OTMO; BASF, Ludwigshafen, Germany) with
Mn ~ 1008 g·mol−1, Mn ~ 1400 g·mol−1, glycidol (grade pure, 99.0%, Research Institute
of Polymer Materials, Perm, Russia), Dibutyltin dilaurate (grade pure, 99.8%) were used
without purification.

2.1.2. Synthesis of OTMO-Diamines

The three-step synthetic route for preparation of OTMO-diamines is presented in
Figure 1.
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Figure 1. Synthetic route for amino terminated oligo tetramethylene oxide (OTMO-diamine).

Nucleophilic substitution of polyfurite hydroxyls with bromine was carried out using
phosphorus tribromide. This approach excludes the use of toxic thionyl chloride, as in the
methods of polyethylene glycol halogenation described in [37]. Bromination of polyfurite
was carried out in a round-bottomed three-necked flask equipped with a mechanical
stirrer and a thermometer. First, a weight of polyfurite (23 mmol, Mn ~ 1008 g·mol−1,
Mn ~ 1400 g·mol−1) was dissolved in chloroform (50 mL), and the solution was introduced
into the flask and cooled to 0 ◦C. Then phosphorus tribromide (1.82 mL, 19 mmol) was
added to the solution dropwise, and the reaction mixture was heated to room temperature
and then boiled for 5 h. After the reaction was completed, reaction mixture was cooled and
added to a saturated aqueous sodium hydrocarbonate solution (50 mL). The organic phase
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was washed with water (3 × 50 mL) and dried over anhydrous magnesium sulfate. The
excessive solvent was removed at a rotary evaporator. As a result, OTMO-dibromides were
obtained in high yields (95–98%).

In the second step, for preparation of OTMO-diamines, potassium phthalimide (24.5 g,
13.2 mmol) was added to a solution of an OTMO-dibromide (22 mmol, Mn ~ 1134 g·mol−1,
Mn ~ 1526 g·mol−1) in DMF (180 mL) and the reaction mixture was stirred under argon
at 120 ◦C for 5 h. Then the solution was cooled and filtered, and DMF was evaporated
in vacuum. For purification, the product was dissolved in DCM, filtered, and the excess
solvent was removed at a rotary evaporator. OTMO-diphtalimides were obtained in the
form of a white viscous mass in high yields (80–85%).

At the final step, hydrazine hydrate (180 mmol, 8.75 mL) was added to OTMO-
diphtalimide (18 mmol) dissolved in absolute ethanol (100 mL). The reaction mixture was
stirred at reflux under argon atmosphere for 5 h. Then the solution was cooled and filtered,
and ethanol was evaporated under vacuum. For purification, the product was dissolved in
DCM and filtered, and the excess solvent was removed at a rotary evaporator. The yield of
OTMO-diamines was 50–58%.

2.1.3. Synthesis of Epoxyurethane Oligomers

A two-step synthetic route for epoxyurethane oligomers via oligodiisocyanate forma-
tion is shown in Figure 2.
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Figure 2. Synthetic route for epoxyurethane oligomers.

The pre-synthesized polyesters were dried at 90 ◦C for 7 h. Oligodiisocyanates were
obtained via interaction of oligodiols and diisocyanate (NCO/OH = 2.03) at constant
temperature of the reaction mixture of 1 h at 60 ◦C and 80 ◦C at stirring for 6 h. The
content of NCO groups in the prepolymers was determined by titration with n-butylamine
(standard method ASTM D 2572-97). Then the reaction mixture was cooled to 40 ◦C, and
the catalyst, di-n-butyl tin dilaurate, and the calculated amount of glycidol were added.
The catalyst amount was 0.03 wt.% of the reaction mixture. Then the reaction mixture
was heated to 70 ◦C and stirred for 8 h. The completeness of the reaction was confirmed
by IR spectroscopy. No band at 2270 cm−1, characteristic of isocyanate group [38], was
observed in the IR spectra of the reaction products. The content of free epoxy groups was
determined according to the technique described in [39]. The composition and properties
of the synthesized oligomers are summarized in Table 1.
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Table 1. Composition and properties of the synthesized oligomers.

Product Code
Molecular Weight

of Initial EUO
OTMO

Diisocyanate
Type

Content of Free Isocyanate
Groups, wt %

Content of Free Epoxy Groups,
wt %

Calculated Determined Calculated Determined

FP-1 1008 2,4-toluene
diisocyanate 6.23 6.31 ± 0.03 5.82 5.71 ± 0.03

FP-2 1008 isophorone
diisocyanate 5.82 5.85 ± 0.03 5.43 5.31 ± 0.03

FP-3 1400 2,4-toluene
diisocyanate 4.81 4.92 ± 0.03 4.64 4.72 ± 0.03

FP-4 1400 isophorone
diisocyanate 4.56 4.62 ± 0.03 4.37 4.45 ± 0.03

FP-5 2000 2,4-toluene
diisocyanate 3.57 3.65 ± 0.03 3.51 3.47 ± 0.03

FP-6 2000 isophorone
diisocyanate 3.43 3.53 ± 0.03 3.54 3.45 ± 0.03

2.1.4. Polymer Synthesis

At the final synthetic step, epoxyurethane oligomers were mixed with a synthesized
curing agent for 10 min under vacuum (1–2 kPa) at 40 ◦C. The resulting reaction mixture
was cured for 48 h at 30 ◦C. Cure monitoring by FTIR was used to determine the required
cure time. Disappearance of the absorption band at 910 cm−1 indicated the completeness
of the epoxy group conversion [40]. The synthetic route is demonstrated in Figure 3.
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The sample compositions are provided in Table 2.

Table 2. Compositions for preparation of the polymers.

Composition Code Oligomer Code Curing Agent

C-1 FP-1 OTMODA 1000
C-2 FP-3 OTMODA 1000
C-3 FP-5 OTMODA 1000
C-4 FP-1 OTMODA 1400
C-5 FP-3 OTMODA 1400
C-6 FP-5 OTMODA 1400
C-7 FP-2 OTMODA 1000
C-8 FP-4 OTMODA 1000
C-9 FP-6 OTMODA 1000

C-10 FP-2 OTMODA 1400
C-11 FP-4 OTMODA 1400
C-12 FP-6 OTMODA 1400
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2.2. Methods

2.2.1. 1H- and 13C-NMR Spectroscopy
1H and 13C NMR spectra were recorded using a Bruker, Moccow, Russia) Avance

Neo III spectrometer (1H: 400 MHz, 13C: 75 MHz); tetramethyl silane was used as an
internal standard. NMR chemical shifts were calibrated using the deuterium signal of
CDCl3 (7.26 ppm for 1H and 77.16 ppm for 13C).

2.2.2. Elemental Analysis

Elemental analysis was carried out using a LECO, Moscow, Russia CHNS-932 analyzer.

2.2.3. Gel Permeation Chromatography

The molecular mass of the oligomers obtained was determined by gel permeation
chromatography using an ULTIMATE 3000 chromatograph (Dionix Thermo Scientific,
Moscow, Russia) equipped with a RefractoMax 521 refractometric detector according
to [41].

2.2.4. FTIR Spectroscopy

FTIR spectra in the area of carbonyl valence vibrations (between wave numbers
ν = 1600 and 1760 cm−1) of the investigated samples were recorded using an IFS-66/S
spectrometer (Bruker, Moscow, Russia) with spectral resolution of 1 cm−1. The spectra were
normalized with respect to the band at 2860 cm−1, corresponding to symmetric vibrations
of aliphatic –CH2 groups [42].

2.2.5. Differential Scanning Calorimetry (DSC)

Endothermic and exothermic effects in the samples within the temperature range from
−100 ◦C to +100 ◦C were recorded using a Mettler Toledo MDSC Q100 calorimeter (Mettler
Toledo, Moscow, Russia). Heating and cooling rates were 5 K min−1.

2.2.6. Mechanical Tests

Mechanical tests of specimens of the materials obtained were performed with an
Instron 3365 (Moscow, Russia) testing machine at the extension velocity υ = 0.417 s−1 and a
temperature of 25 ± 1 ◦C by the standard procedure. The following characteristics were
measured: the nominal strength σk (MPa), i.e., the maximal stress per initial specimen cross
section; the relative critical strain εk (%); the nominal elastic modulus E100 (stress at the
relative strain ε = 100%). The synthesized polymer was subjected to 5 tests.

3. Results

This section is divided into subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

3.1. NMR Spectra of Functionalized Oligotetramethylene Oxides

The transformations of the terminal fragments of the initial polyfurites were confirmed
by NMR data (Figure 4a–d). In the 1H NMR spectra, the protons of the methylene groups of
the initial polyfurites (Mn ~ 1008 g·mol−1, Mn ~ 1400 g·mol−1) are observed at 1.51–1.62 (O-
CH2-CH2-CH2-CH2-O (a)) and 3.31–3.39 (O-CH2-CH2-CH2-CH2-O (b)) ppm, respectively.
The triplet at 3.56 (c) ppm can be attributed to the terminal hydroxy methylene groups.
The signals of the two hydroxy group protons appear at 2.31 ppm (Mn ~ 1008 g·mol−1)
or at 2.60 ppm (Mn ~ 1400 g·mol−1). Upon the substitution of hydroxy groups with
bromine, these signals disappeared. In addition, the signals attributed to the protons of the
methylene groups in the vicinity of halogen atoms were found to be shifted. Further, the
substitution of bromine with phthalimide groups resulted in the appearance of phthalimide
proton signals in a weak field region (δ = 7.63 ppm and 7.76 ppm), and again a shift of
the methylene proton signals in the vicinity of the substituent, in this case, phthalimide, is
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observed. In the next step, in OTMO diamine spectra, there are the peaks attributed to the
protons of two amino groups (δ = 2.87 ppm for Mn ~ 1008 g·mol−1 and δ = 2.67 ppm for
Mn ~ 1400 g·mol−1). The strong field shift of the signals of the functionalized methylene
groups is observed.
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In 13C NMR spectra, at each step of the synthetic route, a shift of the signals of the
terminal methylene carbon (c) and (d) can be distinguished (Figure 4b,d). In addition, weak
field signals (δ = 123, 132, 134, and 168 ppm) appear in the spectra of OTMO-diphtalimides.
These signals disappear after the aminolysis is completed.

Number-average molecular weight (Mn) was determined from 1H NMR spectroscopy
by comparing the integration of the end-group proton resonances to the repeating unit
proton resonances. The results are presented below.
OTMO-dibromide (Mn = 1134 g/mol): 1H NMR (400 MHz, CDCl3, δ, ppm): 3.35 (br m, 55H,
OCH2CH2CH2CH2Br, OCH2CH2CH2CH2O main chain), 1.88 (t, 4H, OCH2CH2CH2CH2Br),
1.64 (t, 4H, OCH2CH2CH2CH2O main chain), 1.55 (br m, 47H, OCH2CH2CH2CH2O
main chain). 13C NMR (75 MHz, CDCl3, δ, ppm): 26.5 (OCH2CH2CH2CH2O), 28.3
(OCH2CH2CH2CH2O), 29.7 (OCH2CH2CH2CH2O), 33.6 (OCH2CH2CH2CH2Br), 69.6 (O
CH2CH2CH2CH2Br), 70.5 (OCH2CH2CH2CH2O).
OTMO-dibromide (Mn = 1526 g/mol): 1H NMR (400 MHz, CDCl3, δ, ppm): 3.35 (br m, 80H,
OCH2CH2CH2CH2Br, OCH2CH2CH2CH2O main chain), 1.88 (t, 4H, OCH2CH2CH2CH2Br),
1.64 (t, 4H, OCH2CH2CH2CH2O main chain), 1.55 (br m, 72H, OCH2CH2CH2CH2O
main chain). 13C NMR (75 MHz, CDCl3, δ, ppm): 26.4 (OCH2CH2CH2CH2O), 28.3
(OCH2CH2CH2CH2O), 29.7 (OCH2CH2CH2CH2O), 33.6 (OCH2CH2CH2CH2Br), 69.6 (O
CH2CH2CH2CH2Br), 70.5 (OCH2CH2CH2CH2O).
OTMO-diphtalimide (Mn = 1266 g/mol): 1H NMR (400 MHz, CDCl3, δ, ppm): 7.76
(m, 4H, Pthalimide), 7.63 (m, 4H, Pthalimide), 3.65 (t, 4H, -CH2CH2-Phtalimide), 3.35
(br m, 51H, OCH2CH2CH2CH2O main chain), 1.70 (t, 4H, -CH2CH2-Phtalimide), 1.55
(br m, 51H, OCH2CH2CH2CH2O main chain). 13C NMR (75 MHz, CDCl3, δ, ppm):
25.3 (OCH2CH2CH2CH2O), 26.4 (OCH2CH2CH2CH2O), 27.0 (OCH2CH2CH2CH2O), 37.7
(OCH2CH2CH2CH2Phtalimide), 69.9 (OCH2CH2CH2CH2Phtalimide), 70.4 (OCH2CH2CH2
CH2O), 123.0 (Pthalimide), 132.0 (Pthalimide), 133.7 (Pthalimide), 168.2 (Pthalimide).
OTMO-diphtalimide (Mn = 1658 g/mol): 1H NMR (400 MHz, CDCl3, δ, ppm): 7.76
(m, 4H, Pthalimide), 7.63 (m, 4H, Pthalimide), 3.64 (t, 4H, -CH2CH2-Phtalimide), 3.35
(br m, 76H, OCH2CH2CH2CH2O main chain), 1.70 (t, 4H, -CH2CH2-Phtalimide), 1.55
(br m, 76H, OCH2CH2CH2CH2O main chain). 13C NMR (75 MHz, CDCl3, δ, ppm):
25.3 (OCH2CH2CH2CH2O), 26.4 (OCH2CH2CH2CH2O), 27.0 (OCH2CH2CH2CH2O), 37.7
(OCH2CH2CH2CH2Phtalimide), 69.9 (OCH2CH2CH2CH2Phtalimide), 70.5 (OCH2CH2CH2
CH2O), 123.0 (Pthalimide), 132.1 (Pthalimide), 133.7 (Pthalimide), 168.2 (Pthalimide).
OTMO-diamines (Mn = 1006 g/mol): 1H NMR (400 MHz, CDCl3, δ, ppm): 3.35 (br m, 51H,
OCH2CH2CH2CH2O main chain), 2.87 (br s, 4H, NH2), 2.66 (t, 4H, OCH2CH2CH2CH2NH2),
1.55 (br m, 55H, OCH2CH2CH2CH2O main chain). 13C NMR (75 MHz, CDCl3, δ, ppm): 26.4
(OCH2CH2CH2CH2O, OCH2CH2CH2CH2NH2), 70.4 (OCH2CH2CH2CH2NH2, OCH2CH2
CH2CH2O).
OTMO-diamines (Mn = 1398 g/mol): 1H NMR (400 MHz, CDCl3, δ, ppm): 3.35 (br m,
80H, OCH2CH2CH2CH2O main chain, OCH2CH2CH2CH2NH2), 2.67 (br s, 4H, NH2), 1.55
(br m, 80H, OCH2CH2CH2CH2O main chain). 13C NMR (75 MHz, CDCl3, δ, ppm): 26.5
(OCH2CH2CH2CH2O, OCH2CH2CH2CH2NH2), 70.6 (OCH2CH2CH2CH2NH2, OCH2CH2
CH2CH2O).

3.2. Elemental Analysis

The data obtained in the course of elemental analysis are provided in the Table 3.
The closeness of the indices to the theoretical values confirms the structure of the synthe-
sized compounds.
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Table 3. Elemental analysis of the synthesized compounds.

C, % H, % N, %

Founded Calculated Founded Calculated Founded Calculated

OTMO-dibromide
(Mn = 1134 g/mol) 58.41 58.20 9.87 9.70 - -

OTMO-dibromide
(Mn = 1526 g/mol) 60.58 60.38 10.19 10.06 - -

OTMO-diphtalimide
(Mn = 1266 g/mol) 67.48 67.30 9.49 9.32 2.37 2.21

OTMO-diphtalimide
(Mn = 1658 g/mol) 67.32 67.15 9.90 9.74 1.84 1.69

OTMO-diamines
(Mn = 1006 g/mol) 65.75 65.61 11.46 11.33 2.90 2.78

OTMO-diamines
(Mn = 1398 g/mol) 66.05 65.90 11.40 11.27 2.17 2.00

3.3. Gel Permeation Chromatography of Functionalized Oligotetramethylene Oxides

In the determination of the molecular mass of compounds, the retention time was
from 4.98 to 5.75 min (Figure 5a,b). The small width of the peaks corresponds to the
narrow molecular-mass distribution of the oligomer. The obtained values of the average
compound molecular mass agree with the theoretical values (Table 4). Furthermore, NMR
spectroscopy and GPC revealed that the Mn values of compounds in both series remained
constant throughout the end-group transformations (Table 4).
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Table 4. Molecular weight characteristics of the compounds determined via 1H NMR spectroscopy,
and GPC.

Mn
1 Mn

2

GPC 1H GPC 1H

OTMO-dibromide 1121 (5.105 *) 1134 1480 (5.550 *) 1526

OTMO-diphtalimide 1250 (5.265 *) 1266 1640 (5.748 *) 1658

OTMO-diamines 1020 (4.980 *) 1006 1380 (5.426 *) 1398

Mn
1—Number-average molecular weight of compounds synthesized on the basis of OTMO with Mn ~

1008 g·mol−1, Mn
2—Number-average molecular weight of compounds synthesized on the basis of OTMO

with Mn ~ 1400 g·mol−1, *—Retention time, min.
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3.4. FTIR Spectroscopy
3.4.1. FTIR Spectra of Functionalized Oligotetramethylene Oxides

The transformation of the terminal hydroxyls in polyfurites into amino groups was
also demonstrated by FTIR spectra (Figure 6).
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Figure 6. The FTIR spectra for the samples: (a) OTMO with Mn ~ 1008 g·mol−1 and its derivatives;
(b) OTMO with Mn ~ 1400 g·mol−1 and its derivatives.

The absorption band at 665 cm−1 (C-Br) is observed in polyfurite spectra after nu-
cleophilic substitution of hydroxy groups with bromine. At the same time, there are no
hydroxyl group bands at 3300–3500 cm−1, usually present in polyfurite spectra. In the
OTMO-diphtalimide spectrum, a characteristic imide peak appears at 1720 cm−1. An ab-
sorption band of amino groups at 3300–3600 cm–1 is observed in the FTIR spectra of OTMO
diamines. The rest of the bands of the intermediates and the end product, OTMO-diamine,
are identical to those of the initial polyfurite. Thus, it can be concluded that the main
chain structure of the oligomer remained unchanged, and only the terminal groups were
involved in the reactions.

3.4.2. FTIR Spectra of the Synthesized Elastomers

The FTIR spectra of the synthesized elastomers are shown in Figure 7a,b. The NH
band of urethane can be found at 3350 cm−1 as a broad absorption. A broad band with
the center at 2950 cm−1 and the one at 2860 cm−1 were assigned to the CH asymmetric
stretching and the symmetric one in the CH2 groups. The absorption bands at 1542, 1454,
and 1412 cm−1 were assigned to the amide−NH stretching. The elastomers synthesized
from 2,4-toluene diisocyanate (C-1–C-6) have absorption bands at 1600 cm (aryl ring) and
also at 1612 cm−1. This band is typical for urethane-containing elastomers synthesized on
the basis of this diisocyanate. For elastomers synthesized from isophrondiisocyanate, these
bands do not appear.

The analysis of the FTIR spectra in the range of carbonyl stretching vibrations
(1600–1760 cm–1) reveals the important features of the structural organization of the synthe-
sized elastomers. It is known that the microphase separation of soft and hard segments
of elastomers with urethane hydroxyl hard blocks is characterized by an absorption band
at 1695 cm−1 when using isophorone diisocyanate and 1705 cm−1 when using 2,4-toluene
diisocyanate [43].

The samples synthesized from 2,4-toluylene diisocyanate (Figure 8a,b) in the vibration
range of 1600–1760 cm−1 have a strong absorption band at 1705 cm−1 that corresponds to
the hydrogen bond between the hard segments of the elastomer showing the high degree
of microphase separation. With an increase in the molecular weight of the oligodiol used
in the synthesis of the epoxyurethane oligomer, the intensity of this band decreases. This
fact indicates that the degree of microphase separation decreases with an increase in the
molecular weight of oligodiol. In the case of using isophorone diisocyanate, the same
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regularity appears (Figure 9). It should be noted that the degree of microphase separation
is higher for samples synthesized from isophorone diisocyanate.
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3.5. Differential Scanning Calorimetry Data

The thermal properties of the synthesized elastomers were studied by differential
scanning calorimetry. First, the samples were heated to 150 ◦C, then cooled to 100 ◦C
below zero, kept for 30 min, and heated at a heating rate of 5 ◦C/min. In Figure 10a,b, the
reheating thermograms of the samples C1–C12 are shown. The thermophysical properties
of the synthesized elastomers are shown in Table 5.
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Table 5. Thermophysical properties of synthesized elastomers.

Composition Code Glass Transition Temperature of
the Soft Phase, ◦C

Melting Temperature of the
Soft Phase, ◦C

C-1 −63 29
C-2 −61 29
C-3 −59 29
C-4 −63 29
C-5 −65 29
C-6 −64 29
C-7 −67 -
C-8 −66 30
C-9 −65 30

C-10 −73 30
C-11 −71 30
C-12 −70 30
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From the presented thermograms, it can be seen that when using the hardener with a
molecular weight of 1000, the glass transition temperature is 5–8 ◦C higher than when using
a hardener with a molecular weight of 1400. This is due to an increase in the segmental
mobility of polymer chains. On the other hand, the use of a hardener with a higher
molecular weight provides the prerequisites for the crystallization of the polymer, which
should reduce the segmental activity of the chains.

The elastomers synthesized from isophorone diisocyanate have a glass transition
temperature lower by 5–10 ◦C than elastomers from 2,4-toluene diisocyanate. This is due
to the lower degree of microphase separation of soft and hard segments in elastomers
(Figures 8a,b and 9a,b). In this case, an increase in the degree of microphase separation
leads to a decrease in the degree of crystallinity of elastomers. It should be noted that
the melting temperature of the flexible phase of all the elastomers except C-7 (there is no
melting in sample C-7) is 29–30 ◦C.

3.6. Deformation and Strength Characteristics

According to the data obtained during mechanical tests (Table 6), the deformation–
strength characteristics depend on both the molecular and supramolecular structure of
the elastomers.

Table 6. Physical–mechanical characteristics of the synthesized elastomers.

Composition Code σk, MPa εk, % E100, MPa

C-1 6.2 ± 0.3 175 ± 7 5.3 ± 0.3
C-2 6.1 ± 0.3 196 ± 7 5.7 ± 0.3
C-3 6.3 ± 0.3 224 ± 7 6.0 ± 0.3
C-4 6.1 ± 0.3 115 ± 5 5.8 ± 0.3
C-5 7.2 ± 0.4 121 ± 5 6.0 ± 0.3
C-6 6.9 ± 0.3 141 ± 5 6.2 ± 0.3
C-7 6.5 ± 0.3 205 ± 7 4.1 ± 0.2
C-8 10.2 ± 0.5 221 ± 7 4.2 ± 0.2
C-9 9.3 ± 0.4 256 ± 10 4.6 ± 0.2

C-10 6.2 ± 0.3 196 ± 7 4.9 ± 0.2
C-11 6.4 ± 0.3 206 ± 7 5.0 ± 0.3
C-12 7.0 ± 0.3 261 ± 10 5.5 ± 0.3

The elastomers synthesized from 2,4-toluene diisocyanate show a higher Young’s
modulus (E100), which is explained by a higher degree of crystallinity of the elastomers.
However, elastomers synthesized from isophrondiisocyanate, due to a higher degree of
microphase separation of soft and hard segments, are characterized by higher strength char-
acteristics. With an increase in the molecular weight of the used hardener, Young’s modulus
also increases. Increasing the molecular weight of EUO when using a higher molecular
weight OTMO in its synthesis leads to an increase in the deformation characteristics of the
cured elastomer.

4. Conclusions

For the first time, a method has been developed for the synthesis of oligotetramethy-
lene oxides with terminal amino groups, including the initial bromination of oligotetram-
ethylene oxide diols, followed by the Gabriel reaction.

Six epoxyurethane oligomers were prepared using the oligotetramethylene oxide
diol with Mn ~ 1008 g·mol−1, Mn ~ 1400 g·mol−1, isophorone diisocyanate, 2,4-toluene
diisocyanate, and epoxy alcohol-glycidol.

Twelve elastomers from oligomers with urethane hydroxyl hard segments were pre-
pared using synthesized amines.

For the first time, on the basis of epoxyurethane oligomers, synthesized on the basis of
polyethers, crystallizable elastomers have been obtained.
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The degree of microphase separation is higher for samples synthesized from isophorone
diisocyanate.

It has been shown that the use of new oligoamines makes it possible to obtain elas-
tomers with a controlled degree of crystallinity, which allows them to be used as shape
memory materials. At the same time, the glass transition temperature of elastomers
−60–70 ◦C allows them to be used in extreme conditions of the far North.

The elastomers synthesized from 2,4-toluene diisocyanate exhibit a higher Young’s
modulus (E100) due to a higher degree of crystallinity of the elastomers. However, elas-
tomers synthesized from isophrondiisocyanate, due to a higher degree of microphase
separation of soft and hard segments, are characterized by higher strength characteristics.
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