Surveying the Oral Drug Delivery Avenues of Novel Chitosan Derivatives
Abstract
:1. Introduction
2. Comprehensive List of Novel Chitosan Derivatives
3. Oral Drug Delivery by Chitosan Derivatives
3.1. Chitosan/Chitosan Derivatives
3.2. Micro- and Nanoparticulate Oral Drug Delivery Systems Based on Chitosan Derivatives
3.2.1. Microparticulate Chitosan Derivatives Oral Drug Delivery Systems
3.2.2. Nanoparticulate Chitosan Derivatives Oral Drug Delivery Systems
4. Future Endeavors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kato, Y.; Onishi, H.; Machida, Y. Application of chitin and chitosan derivatives in the pharmaceutical field. Curr. Pharm. Biotechnol. 2003, 4, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Singla, A.K.; Chawla, M. Chitosan: Some pharmaceutical and biological aspects—An update. J. Pharm. Pharmacol. 2001, 53, 1047–1067. [Google Scholar] [CrossRef] [PubMed]
- Kas, H.S. Chitosan: Properties, preparations and application to microparticulate systems. J. Microencapsul. 1997, 14, 689–711. [Google Scholar] [CrossRef] [PubMed]
- Varshosaz, J. The promise of chitosan microspheres in drug delivery systems. Expert Opin. Drug Deliv. 2007, 4, 263–273. [Google Scholar] [CrossRef]
- Galed, G.; Miralles, B.; Panos, I.; Santiago, A.; Heras, A. N-Deacetylation and depolymerization reactions of chitin/chitosan: Influence of the source of chitin. Carbohydr. Polym. 2005, 62, 316–320. [Google Scholar] [CrossRef]
- Yan, C.Y.; Gu, J.W.; Hou, D.P.; Jing, H.Y.; Wang, J.; Guo, Y.Z.; Katsumi, H.; Sakane, T.; Yamamoto, A. Synthesis of Tat tagged and folate modified N-succinyl-chitosan self-assembly nanoparticles as a novel gene vector. Int. J. Biol. Macromol. 2015, 72, 751–756. [Google Scholar] [CrossRef]
- Zhu, A.P.; Chen, T.; Yuan, L.H.; Wu, H.; Lu, P. Synthesis and characterization of N-succinyl-chitosan and its self-assembly of nanospheres. Carbohydr. Polym. 2006, 66, 274–279. [Google Scholar] [CrossRef]
- Chien, R.C.; Yen, M.T.; Mau, J.L. Antimicrobial and antitumor activities of chitosan from shiitake stipes, compared to commercial chitosan from crab shells. Carbohydr. Polym. 2016, 138, 259–264. [Google Scholar] [CrossRef]
- Huang, M.; Khor, E.; Lim, L.Y. Uptake and cytotoxicity of chitosan molecules and nanoparticles: Effects of molecular weight and degree of deacetylation. Pharm. Res. 2004, 21, 344–353. [Google Scholar] [CrossRef]
- Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int. J. Food Microbiol. 2010, 144, 51–63. [Google Scholar] [CrossRef]
- Goy, R.C.; de Britto, D.; Assis, O.B.G. A Review of the Antimicrobial Activity of Chitosan. Polimeros 2009, 19, 241–247. [Google Scholar] [CrossRef]
- Ngo, D.H.; Vo, T.S.; Ngo, D.N.; Kang, K.H.; Je, G.Y.; Pham, H.N.; Byun, H.G.; Kim, S.K. Biological effects of chitosan and its derivatives. Food Hydrocoll. 2015, 51, 200–216. [Google Scholar] [CrossRef]
- Bugnicourt, L.; Ladaviere, C. Interests of chitosan nanoparticles conically cross-linked with tripolyphosphate for biomedical applications. Prog. Polym. Sci. 2016, 60, 1–17. [Google Scholar] [CrossRef]
- Yamamoto, H.; Kuno, Y.; Sugimoto, S.; Takeuchi, H.; Kawashima, Y. Surface-modified PLGA nanosphere with chitosan improved pulmonary delivery of calcitonin by mucoadhesion and opening of the intercellular tight junctions. J. Control. Release 2005, 102, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, Y.; Yano, R.; Miyatake, K.; Tomohiro, I.; Shigemasa, Y.; Minami, S. Effects of chitin and chitosan on blood coagulation. Carbohydr. Polym. 2003, 53, 337–342. [Google Scholar] [CrossRef]
- Busilacchi, A.; Gigante, A.; Mattioli-Belmonte, M.; Manzotti, S.; Muzzarelli, R.A.A. Chitosan stabilizes platelet growth factors and modulates stem cell differentiation toward tissue regeneration. Carbohydr. Polym. 2013, 98, 665–676. [Google Scholar] [CrossRef]
- Tokoro, A.; Tatewaki, N.; Suzuki, K.; Mikami, T.; Suzuki, S.; Suzuki, M. Growth-Inhibitory Effect of Hexa-N-Acetylchitohexaose and Chitohexaose against Meth-a Solid Tumor. Chem. Pharm. Bull. 1988, 36, 784–790. [Google Scholar] [CrossRef] [Green Version]
- Ngo, D.H.; Kim, S.K. Antioxidant effects of chitin, chitosan, and their derivatives. Adv. Food Nutr. Res. 2014, 73, 15–31. [Google Scholar] [CrossRef]
- Younes, I.; Rinaudo, M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar. Drugs 2015, 13, 1133–1174. [Google Scholar] [CrossRef] [Green Version]
- Park, P.J.; Je, J.Y.; Kim, S.K. Free radical scavenging activity of chitooligosaccharides by electron spin resonance spectrometry. J. Agric. Food Chem. 2003, 51, 4624–4627. [Google Scholar] [CrossRef]
- Riaz Rajoka, M.S.; Zhao, L.; Mehwish, H.M.; Wu, Y.; Mahmood, S. Chitosan and its derivatives: Synthesis, biotechnological applications, and future challenges. Appl. Microbiol. Biotechnol. 2019, 103, 1557–1571. [Google Scholar] [CrossRef] [PubMed]
- Confederat, L.G.; Tuchilus, C.G.; Dragan, M.; Sha’at, M.; Dragostin, O.M. Preparation and Antimicrobial Activity of Chitosan and Its Derivatives: A Concise Review. Molecules 2021, 26, 3694. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Yu, S.; Sun, B.; Gao, S.; Guo, S.; Zhao, K. Biomedical Applications of Chitosan and Its Derivative Nanoparticles. Polymers 2018, 10, 462. [Google Scholar] [CrossRef] [Green Version]
- Mi, F.L.; Shyu, S.S.; Chen, C.T.; Schoung, J.Y. Porous chitosan microsphere for controlling the antigen release of Newcastle disease vaccine: Preparation of antigen-adsorbed microsphere and in vitro release. Biomaterials 1999, 20, 1603–1612. [Google Scholar] [CrossRef]
- Ubaidulla, U.; Khar, R.K.; Ahmad, F.J.; Sultana, Y.; Panda, A.K. Development and characterization of chitosan succinate microspheres for the improved oral bioavailability of insulin. J. Pharm. Sci. 2007, 96, 3010–3023. [Google Scholar] [CrossRef]
- Bernkop-Schnurch, A.; Pinter, Y.; Guggi, D.; Kahlbacher, H.; Schoffmann, G.; Schuh, M.; Schmerold, I.; Del Curto, M.D.; D’Antonio, M.; Esposito, P.; et al. The use of thiolated polymers as carrier matrix in oral peptide delivery—Proof of concept. J. Control. Release 2005, 106, 26–33. [Google Scholar] [CrossRef]
- Yamaguchi, R.; Arai, Y.; Itoh, T.; Hirano, S. Preparation of Partially N-Succinylated Chitosans and Their Cross-Linked Gels. Carbohydr. Res. 1981, 88, 172–175. [Google Scholar] [CrossRef]
- Nishimura, S.I.; Miura, Y.; Ren, L.D.; Sato, M.; Yamagishi, A.; Nishi, N.; Tokura, S.; Kurita, K.; Ishii, S. An Efficient Method for the Syntheses of Novel Amphiphilic Polysaccharides by Regioselective and Thermoselective Modifications of Chitosan. Chem. Lett. 1993, 22, 1623–1626. [Google Scholar] [CrossRef]
- Holme, K.R.; Hall, L.D. Chitosan Derivatives Bearing C-10-Alkyl Glycoside Branches—A Temperature-Induced Gelling Polysaccharide. Macromolecules 1991, 24, 3828–3833. [Google Scholar] [CrossRef]
- Ramos, V.M.; Rodriguez, N.M.; Rodriguez, M.S.; Heras, A.; Agullo, E. Modified chitosan carrying phosphonic and alkyl groups. Carbohydr. Polym. 2003, 51, 425–429. [Google Scholar] [CrossRef]
- Di Colo, G.; Zambito, Y.; Burgalassi, S.; Serafini, A.; Saettone, M.F. Effect of chitosan on in vitro release and ocular delivery of ofloxacin from erodible inserts based on poly(ethylene oxide). Int. J. Pharm. 2002, 248, 115–122. [Google Scholar] [CrossRef]
- Bernkop-Schnurch, A.; Hornof, M.; Zoidl, T. Thiolated polymers-thiomers: Synthesis and in vitro evaluation of chitosan-2-iminothiolane conjugates. Int. J. Pharm. 2003, 260, 229–237. [Google Scholar] [CrossRef]
- Sakaguchi, T.; Horikoshi, T.; Nakajima, A. Studies on the Accumulation of Heavy-Metal Elements in Biological-Systems. 20. Adsorption of Uranium by Chitin Phosphate and Chitosan Phosphate. Agric. Biol. Chem. Tokyo 1981, 45, 2191–2195. [Google Scholar] [CrossRef] [Green Version]
- Thanou, M.; Nihot, M.T.; Jansen, M.; Verhoef, J.C.; Junginger, H.E. Mono-N-carboxymethyl chitosan (MCC), a polyampholytic chitosan derivative, enhances the intestinal absorption of low molecular weight heparin across intestinal epithelia in vitro and in vivo. J. Pharm. Sci. 2001, 90, 38–46. [Google Scholar] [CrossRef]
- Thanou, M.; Henderson, S.; Kydonieus, A.; Elson, C. N-sulfonato-N,O-carboxymethylchitosan: A novel polymeric absorption enhancer for the oral delivery of macromolecules. J. Control. Release 2007, 117, 171–178. [Google Scholar] [CrossRef]
- Hayes, E.R. N,O-carboxymethyl Chitosan and Preparative Method Therefor. U.S. Patent US4619995A, 28 October 1986. [Google Scholar]
- Prego, C.; Torres, D.; Fernandez-Megia, E.; Novoa-Carballal, R.; Quinoa, E.; Alonso, M.J. Chitosan-PEG nanocapsules as new carriers for oral peptide delivery—Effect of chitosan pegylation degree. J. Control. Release 2006, 111, 299–308. [Google Scholar] [CrossRef]
- Zhang, M.; Li, X.H.; Gong, Y.D.; Zhao, N.M.; Zhang, X.F. Properties and biocompatibility of chitosan films modified by blending with PEG. Biomaterials 2002, 23, 2641–2648. [Google Scholar] [CrossRef]
- Ashford, M. Biopharmaceutical principles of drug delivery. In Pharmaceutics: The Science of Dosage Form Design, 2nd ed.; Aulton, M.E., Ed.; Churchill Livingstone: New York, NY, USA, 2001; pp. 211–253. [Google Scholar]
- Younis, M.K.; Tareq, A.Z.; Kamal, I.M. Optimization Of Swelling, Drug Loading And Release From Natural Polymer Hydrogels. IOP Conf. Ser. Mater. Sci. Eng. 2018, 454, 12–17. [Google Scholar] [CrossRef]
- Gisbert, J.P.; Torrado, G.; Torrado, S.; Olivares, D.; Pajares, J.M. Clinical trial evaluating amoxicillin and clarithromycin hydrogels (Chitosan-polyacrylic acid polyionic complex) for H. pylori eradication. J. Clin. Gastroenterol. 2006, 40, 618–622. [Google Scholar] [CrossRef]
- Chang, C.H.; Lin, Y.H.; Yeh, C.L.; Chen, Y.C.; Chiou, S.F.; Hsu, Y.M.; Chen, Y.S.; Wang, C.C. Nanoparticles incorporated in pH-sensitive hydrogels as amoxicillin delivery for eradication of Helicobacter pylori. Biomacromolecules 2010, 11, 133–142. [Google Scholar] [CrossRef]
- Dhaliwal, S.; Jain, S.; Singh, H.P.; Tiwary, A.K. Mucoadhesive microspheres for gastroretentive delivery of acyclovir: In vitro and in vivo evaluation. AAPS J. 2008, 10, 322–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, W.; Ma, G.H.; Wang, L.Y.; Wu, J.; Su, Z.G. Hollow quaternized chitosan microspheres increase the therapeutic effect of orally administered insulin. Acta Biomater. 2010, 6, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Hejazi, R.; Amiji, M. Chitosan-based gastrointestinal delivery systems. J. Control. Release 2003, 89, 151–165. [Google Scholar] [CrossRef]
- Varshosaz, J.; Jaffarian Dehkordi, A.; Golafshan, S. Colon-specific delivery of mesalazine chitosan microspheres. J. Microencapsul. 2006, 23, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Mladenovska, K.; Raicki, R.S.; Janevik, E.I.; Ristoski, T.; Pavlova, M.J.; Kavrakovski, Z.; Dodov, M.G.; Goracinova, K. Colon-specific delivery of 5-aminosalicylic acid from chitosan-Ca-alginate microparticles. Int. J. Pharm. 2007, 342, 124–136. [Google Scholar] [CrossRef]
- Eizatahry, A.A.; Eldin, M.S.M. Preparation and characterization of metronidazole loaded chitosan nanoparticles for drug delivery application. Polym. Adv. Technol. 2008, 19, 1787–1791. [Google Scholar] [CrossRef]
- Jain, S.K.; Jain, A.; Gupta, Y.; Ahirwar, M. Design and development of hydrogel beads for targeted drug delivery to the colon. AAPS PharmSciTech 2007, 8, E56. [Google Scholar] [CrossRef] [Green Version]
- Oosegi, T.; Onishi, H.; Machida, Y. Novel preparation of enteric-coated chitosan-prednisolone conjugate microspheres and in vitro evaluation of their potential as a colonic delivery system. Eur. J. Pharm. Biopharm. 2008, 68, 260–266. [Google Scholar] [CrossRef]
- Li, H.Y.; Birchall, J. Chitosan-modified dry powder formulations for pulmonary gene delivery. Pharm. Res. 2006, 23, 941–950. [Google Scholar] [CrossRef]
- Lee, D.; Zhang, W.; Shirley, S.A.; Kong, X.; Hellermann, G.R.; Lockey, R.F.; Mohapatra, S.S. Thiolated chitosan/DNA nanocomplexes exhibit enhanced and sustained gene delivery. Pharm. Res. 2007, 24, 157–167. [Google Scholar] [CrossRef]
- Martien, R.; Loretz, B.; Thaler, M.; Majzoob, S.; Bernkop-Schnurch, A. Chitosan-thioglycolic acid conjugate: An alternative carrier for oral nonviral gene delivery? J. Biomed. Mater. Res. A 2007, 82, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Loretz, B.; Foger, F.; Werle, M.; Bernkop-Schnurch, A. Oral gene delivery: Strategies to improve stability of pDNA towards intestinal digestion. J. Drug Target. 2006, 14, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Martien, R.; Loretz, B.; Schnurch, A.B. Oral gene delivery: Design of polymeric carrier systems shielding toward intestinal enzymatic attack. Biopolymers 2006, 83, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Loretz, B.; Bernkop-Schnurch, A. In vitro evaluation of chitosan-EDTA conjugate polyplexes as a nanoparticulate gene delivery system. AAPS J 2006, 8, E756–E764. [Google Scholar] [CrossRef] [Green Version]
- Foger, F.; Hoyer, H.; Kafedjiiski, K.; Thaurer, M.; Bernkop-Schurch, A. In vivo comparison of various polymeric and low molecular mass inhibitors of intestinal P-glycoprotein. Biomaterials 2006, 27, 5855–5860. [Google Scholar] [CrossRef]
- Foger, F.; Kafedjiiski, K.; Hoyer, H.; Loretz, B.; Bernkop-Schnurch, A. Enhanced transport of P-glycoprotein substrate saquinavir in presence of thiolated chitosan. J. Drug Target. 2007, 15, 132–139. [Google Scholar] [CrossRef]
- Foger, F.; Schmitz, T.; Bernkop-Schnurch, A. In vivo evaluation of an oral delivery system for P-gp substrates based on thiolated chitosan. Biomaterials 2006, 27, 4250–4255. [Google Scholar] [CrossRef]
- van der Lubben, I.M.; Verhoef, J.C.; Borchard, G.; Junginger, H.E. Chitosan and its derivatives in mucosal drug and vaccine delivery. Eur. J. Pharm. Sci. 2001, 14, 201–207. [Google Scholar] [CrossRef]
- Werle, M.; Takeuchi, H.; Bernkop-Schnurch, A. Modified Chitosans for Oral Drug Delivery. J. Pharm Sci. 2009, 98, 1643–1656. [Google Scholar] [CrossRef]
- Werle, M.; Bernkop-Schnurch, A. Thiolated chitosans: Useful excipients for oral drug delivery. J. Pharm. Pharmacol. 2008, 60, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Thanou, M.; Florea, B.I.; Langemeyer, M.W.; Verhoef, J.C.; Junginger, H.E. N-trimethylated chitosan chloride (TMC) improves the intestinal permeation of the peptide drug buserelin in vitro (Caco-2 cells) and in vivo (rats). Pharm. Res. 2000, 17, 27–31. [Google Scholar] [CrossRef]
- Thanou, M.; Verhoef, J.C.; Verheijden, J.H.M.; Junginger, H.E. Intestinal absorption of octreotide using trimethyl chitosan chloride: Studies in pigs. Pharm. Res. 2001, 18, 823–828. [Google Scholar] [CrossRef] [PubMed]
- Guggi, D.; Bernkop-Schnurch, A. In vitro evaluation of polymeric excipients protecting calcitonin against degradation by intestinal serine proteases. Int. J. Pharm. 2003, 252, 187–196. [Google Scholar] [CrossRef]
- Guggi, D.; Kast, C.E.; Bernkop-Schnurch, A. In vivo evaluation of an oral salmon calcitonin-delivery system based on a thiolated chitosan carrier matrix. Pharm. Res. 2003, 20, 1989–1994. [Google Scholar] [CrossRef]
- Guggi, D.; Krauland, A.H.; Bernkop-Schnurch, A. Systemic peptide delivery via the stomach: In vivo evaluation of an oral dosage form for salmon calcitonin. J. Control. Release 2003, 92, 125–135. [Google Scholar] [CrossRef]
- Werle, M.; Loretz, B.; Entstrasser, D.; Foger, F. Design and evaluation of a chitosan-aprotinin conjugate for the peroral delivery of therapeutic peptides and proteins susceptible to enzymatic degradation. J. Drug Target. 2007, 15, 327–333. [Google Scholar] [CrossRef]
- Wu, Z.H.; Ping, Q.N.; Lei, X.M.; Li, J.Y.; Cai, P. Effects of the liposomes coated by chitosan and its derivatives on the gastrointestinal transit of insulin. Yao Xue Xue Bao 2005, 40, 618–622. [Google Scholar] [PubMed]
- Zhang, Y.; Wei, W.; Lv, P.; Wang, L.; Guanghui, M. Preparation and evaluation of alginate—Chitosan microspheres for oral deliveryof insulin. Eur. J. Pharm. Biopharm. 2011, 77, 11–19. [Google Scholar] [CrossRef] [PubMed]
- van der Lubben, I.M.; Verhoef, J.C.; van Aelst, A.C.; Borchard, G.; Junginger, H.E. Chitosan microparticles for oral vaccination: Preparation, characterization and preliminary in vivo uptake studies in murine Peyer’s patches. Biomaterials 2001, 22, 687–694. [Google Scholar] [CrossRef]
- Ganza-González, A.; Anguiano-Igea, S.; Otero-Espinar, F.J.; Blanco Méndez, J. Chitosan and chondroitin microspheres for oral-administration controlled release of metoclopramide. Eur. J. Pharm. Biopharm. 1999, 48, 149–155. [Google Scholar] [CrossRef]
- Wan, S.; Sun, Y.; Sun, L.; Tan, F. Chitosan microparticles for oral bioavailability improvement of the hydrophobic drug curcumin. Pharmazie 2012, 67, 525–528. [Google Scholar] [PubMed]
- Jintapattanakit, A.; Junyaprasert, V.B.; Mao, S.; Sitterberg, J.; Bakowsky, U.; Kissel, T. Peroral delivery of insulin using chitosan derivatives: A comparative study of polyelectrolyte nanocomplexes and nanoparticles. Int. J. Pharm. 2007, 342, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Zhang, Z.R.; Yuan, F.; Qin, X.; Wang, M.T.; Huang, Y. In vitro and in vivo study of N-trimethyl chitosan nanoparticles for oral protein delivery. Int. J. Pharm. 2008, 349, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.; Shi, X.W.; Yang, G.F.; Gong, L.L.; Yuan, H.Y.; Cui, Y.J.; Wang, Y.; Du, Y.M.; Li, Y. Chitosan nanoparticle as gene therapy vector via gastrointestinal mucosa administration: Results of an in vitro and in vivo study. Life Sci. 2007, 80, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Deutel, B.; Greindl, M.; Thaurer, M.; Bernkop-Schnuerch, A. Novel insulin thiomer nanoparticles: In vivo evaluation of an oral drug delivery system. Biomacromolecules 2008, 9, 278–285. [Google Scholar] [CrossRef]
- Tsai, L.C.; Chen, C.H.; Lin, C.W.; Ho, Y.C.; Mi, F.L. Development of mutlifunctional nanoparticles self-assembled from trimethyl chitosan and fucoidan for enhanced oral delivery of insulin. Int. J. Biol. Macromol. 2019, 126, 141–150. [Google Scholar] [CrossRef]
- Gao, M.; Sun, Y.; Kou, Y.; Shen, X.; Huo, Y.; Liu, C.; Sun, Z.; Zhang, X.; Mao, S. Effect of glyceryl monocaprylate-modified chitosan on the intranasal absorption of insulin in rats. J. Pharm. Sci. 2019, 108, 3623–3629. [Google Scholar] [CrossRef]
- Thanou, M.; Verhoef, J.C.; Marbach, P.; Junginger, H.E. Intestinal absorption of octreotide: N-trimethyl chitosan chloride (TMC) ameliorates the permeability and absorption properties of the somatostatin analogue in vitro and in vivo. J. Pharm. Sci. 2000, 89, 951–957. [Google Scholar] [CrossRef]
- Bansal, V.; Sharma, P.K.; Sharma, N.; Pal, O.P.; Malviya, R. Applications of Chitosan and Chitosan Derivatives in Drug Delivery. Adv. Biol. Res. 2011, 5, 28–37. [Google Scholar]
- Lai, W.F.; Lin, M.C.M. Nucleic acid delivery with chitosan and its derivatives. J. Control. Release 2009, 134, 158–168. [Google Scholar] [CrossRef]
- Moreira, C.; Oliveira, H.; Pires, L.R.; Simoes, S.; Barbosa, M.A.; Pego, A.P. Improving chitosan-mediated gene transfer by the introduction of intracellular buffering moieties into the chitosan backbone. Acta Biomater. 2009, 5, 2995–3006. [Google Scholar] [CrossRef] [PubMed]
- Torchilin, V.P. Nanocarriers. Pharm. Res. 2007, 24, 2333–2334. [Google Scholar] [CrossRef] [PubMed]
- Chopra, S.; Mahdi, S.; Kaur, J.; Iqbal, Z.; Talegaonkar, S.; Ahmad, F.J. Advances and potential applications of chitosan derivatives as mucoadhesive biomaterials in modern drug delivery. J. Pharm. Pharmacol. 2006, 58, 1021–1032. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Ma, R.; Lin, C.; Liu, Z.; Tang, T. Quaternized Chitosan as an Antimicrobial Agent: Antimicrobial Activity, Mechanism of Action and Biomedical Applications in Orthopedics. Int. J. Mol. Sci. 2013, 14, 1854–1869. [Google Scholar] [CrossRef]
- Rassu, G.; Gavini, E.; Jonassen, H.; Zambito, Y.; Fogli, S.; Breschi, M.C.; Giunchedi, P. New chitosan derivatives for the preparation of rokitamycin loaded microspheres designed for ocular or nasal administration. J. Pharm. Sci. 2009, 98, 4852–4865. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, Q.; Li, X.; Huang, K.; Shao, W.; Yao, D.; Huang, C. Redox-responsive blend hydrogel films based on carboxymethyl cellulose/chitosan microspheres as dual delivery carrier. Int. J. Biol. Macromol. 2019, 134, 413–421. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Z.; Bao, X.; Xu, G.; Yao, P. Fatty acid and quaternary ammonium modified chitosan nanoparticles for insulin delivery. Colloids Surf. B 2018, 170, 136–143. [Google Scholar] [CrossRef]
- Trivedi, A.; Hoffman, J.; Arora, R. Gene therapy for atrial fibrillation—How close to clinical implementation? Int. J. Cardiol. 2019, 296, 177–183. [Google Scholar] [CrossRef]
- Gollomp, K.L.; Doshi, B.S.; Arruda, V.R. Gene therapy for hemophilia: Progress to date and challenges moving forward. Transfus. Apher. Sci. 2019, 58, 602–612. [Google Scholar] [CrossRef]
- Kean, T.; Roth, S.; Thanou, M. Trimethylated chitosans as non-viral gene delivery vectors: Cytotoxicity and transfection efficiency. J. Control. Release 2005, 103, 643–653. [Google Scholar] [CrossRef]
- Mai, Q.; Shen, S.; Liu, Y.; Tang, C.; Yin, C. PEG modified trimethyl chitosan based nanoparticles for the codelivery of doxorubicin and iSur-pDNA. Mater. Lett. 2019, 238, 143–146. [Google Scholar] [CrossRef]
- Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, L.; Xu, J.; Zhang, Y.; Zhou, J.; Chen, D.; Chang, Z. Preparation and characterization of porous chitosan microspheres and adsorption performance for hexavalent chromium. Int. J. Biol. Macromol. 2019, 135, 898–906. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, Y.; Xie, Y.; Chen, J.; Dou, Y. Apoptosis of A549 cells by small interfering RNA targeting survivin delivery using poly-β-amino ester/guanidinylated O-carboxymethyl chitosan nanoparticles. Asian J. Pharm. Sci. 2020, 15, 121–128. [Google Scholar] [CrossRef] [PubMed]
Chitosan Derivative | Oral Drug Delivery Application | References |
---|---|---|
TMC, thiolated chitosan | noninvasive gene delivery | [52,53] |
Thiolated chitosan | oral delivery of P-glycoprotein (P-gp) substrates | [57,58,59] |
TMC, MCC | oral vaccine delivery | [60] |
Trimethyl chitosans (TMC) | oral absorption of the peptide drug buserelin after intraduodenal administration in rats | [63] |
TMC | octreotide in vitro permeation and in vivo absorption in rats | [80] |
TMC | oral bioavailability of octreotide in pigs | [64] |
MCC, SNOCC | oral delivery of LMWH | [34,35] |
Chitosan–TBA | oral administration of drug salmon calcitonin to rats | [65] |
Chitosan–TBA/chitosan–enzyme inhibitor conjugate | Delivery of drug salmon calcitonin | [66] |
Chitosan–TBA, chitosan–pepstatin | Stomach targeted delivery of salmon calcitonin | [67] |
Chitosan–TBA/GSH | oral peptide delivery of peptide drug antide | [26] |
Chitosan–TBA | Oral bioavailability of the P-gp substrate Rhodamine 123 | [59] |
Chitosan–TBA | 5.5-fold increase in Rho-123 AUC | [59] |
Chitosan–pepstatin conjugate tablets | Reduction of blood calcium level of rats after oral administration | [67] |
Chitosan–aprotinin conjugate | Oral insulin delivery | [68] |
TMC–nanoparticles–Vaccine urease | Oral vaccine delivery–higher IgG and IgA levels | [75] |
TMC nanoparticles | gene delivery | [76] |
TMC–based nanoparticles encapsulatde pDNA encoding green fluorescentprotein (GFP) | Oral delivery | [53] |
chitosan-TGA and pDNA | Oral delivery | [53] |
thiolatedpoly(acrylic acid) nanoparticles | Oral insulin delivery | [77] |
Chitosan–TGA nanoparticles | intranasal gene delivery | [52] |
liposomes coated with dodecylated chitosan | Intragastric administration of calcitonin | [37] |
TMC and chitosan–EDTA | Oral absorption of insulin | [78] |
chitosan-succinate | oral delivery of insulin chitosan-succinate microspheres | [25] |
Chitosan–succinate microspheres | in vivo insulin delivery in diabetic rats | [25] |
TMC/FD NPs | defend insulin from degradation in the GIT, enhance transport | [79,80] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sivanesan, I.; Tasneem, S.; Hasan, N.; Shin, J.; Muthu, M.; Gopal, J.; Oh, J.-W. Surveying the Oral Drug Delivery Avenues of Novel Chitosan Derivatives. Polymers 2022, 14, 2131. https://doi.org/10.3390/polym14112131
Sivanesan I, Tasneem S, Hasan N, Shin J, Muthu M, Gopal J, Oh J-W. Surveying the Oral Drug Delivery Avenues of Novel Chitosan Derivatives. Polymers. 2022; 14(11):2131. https://doi.org/10.3390/polym14112131
Chicago/Turabian StyleSivanesan, Iyyakkannu, Shadma Tasneem, Nazim Hasan, Juhyun Shin, Manikandan Muthu, Judy Gopal, and Jae-Wook Oh. 2022. "Surveying the Oral Drug Delivery Avenues of Novel Chitosan Derivatives" Polymers 14, no. 11: 2131. https://doi.org/10.3390/polym14112131
APA StyleSivanesan, I., Tasneem, S., Hasan, N., Shin, J., Muthu, M., Gopal, J., & Oh, J.-W. (2022). Surveying the Oral Drug Delivery Avenues of Novel Chitosan Derivatives. Polymers, 14(11), 2131. https://doi.org/10.3390/polym14112131