Ceramifiable Silicone Rubber Composites with Enhanced Self-Supporting and Ceramifiable Properties
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Sample Preparation and Pyrolysis
2.3. Characterization
3. Results and Discussion
3.1. Surface Morphology of All Samples Fired at Different Temperatures
3.2. Self-Supporting Property of Ceramifiable Silicone Rubber Composites
3.3. Flexural Strength of All Residues
3.4. XRD and FTIR Analysis
3.5. Bulk Density and Water Absorption
3.6. Limited Oxygen Index Analysis
3.7. SEM-EDS Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, L.L.; Zhang, M.L.; Zhou, B.B. Thermal stability, combustion behavior, and mechanical property in a flame-retardant polypropylene system. Appl. Sci. 2017, 7, 55–67. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Deng, C.; Wang, Y.Z. A novel high-temperature-resistant polymeric material for cables and insulated wires via the ceramization of mica-based ceramifiable EVA composites. Compos. Sci. Technol. 2016, 132, 116–122. [Google Scholar] [CrossRef]
- Hanu, L.G.; Simon, G.P.; Cheng, Y.B. Preferential orientation of muscovite in ceramifiable silicone composites. Mater. Sci. Eng. A 2005, 398, 180–187. [Google Scholar] [CrossRef]
- Mansouri, J.; Burford, R.P.; Cheng, Y.B.; Hanu, L. Pyrolysis behaviour of silicone-based ceramifying composites. Mater. Sci. Eng. A 2005, 40, 5741–5749. [Google Scholar] [CrossRef]
- Mei, Q.L.; Wang, H.H.; Chen, X.C.; Wang, Y.; Huang, Z.X. A novel zirconium modified arylacetylene resin:Preparation, thermal properties and ceramifiable mechanism. Polymers 2020, 12, 684. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.H.; Ji, C.T.; Yan, Y.T.; Zhao, D.; Shi, L.Y. Mechanical and ceramifiable properties of silicone rubber filled with different inorganic fillers. Polym. Degrad. Stab. 2015, 121, 149–156. [Google Scholar] [CrossRef]
- Guo, J.H.; Gao, W.; Wang, Y.; Liang, D.; Li, H.J.; Zhang, X. Effect of glass frit with low softening temperature on the properties, microstructure and formation mechanism of polysiloxane elastomer-based ceramizable composites. Polym. Degrad. Stab. 2017, 136, 71–79. [Google Scholar] [CrossRef]
- Mansouri, J.; Burford, R.P.; Cheng, Y.B. Formation of strong ceramified ash from silicone-based compositions. Mater. Sci. Eng. A 2006, 425, 7–14. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, W.; Shen, Y.C.; Jiang, G.D.; Wang, T.W. Improved self-supporting and ceramifiable properties of ceramifiable EPDM composites by adding aramid fiber. Polymers 2020, 12, 1523. [Google Scholar] [CrossRef]
- Guo, J.H.; Chen, X.M.; Zhang, Y. Improving the mechanical and electrical properties of ceramizable silicone rubber/halloysite composites and their ceramic residues by incorporation of different borates. Polymers 2018, 10, 388. [Google Scholar] [CrossRef] [Green Version]
- Shi, M.M.; Tang, Q.X.; Fan, S.S.; Dong, C.; Huang, Z.X. Ceramification of composites of MgO-Al2O3-SiO2/Boron phenolic resin with different calcine time. J. Wuhan Univ. Technol.-Mater. 2021, 36, 174–182. [Google Scholar] [CrossRef]
- Yang, J.; Xu, Y.Y.; Jiang, W.H.; Jiang, B.; Huang, Y.D. The thermal transformation process and mechanical strength evolution of ceramifiable silicone composites. Ceram. Int. 2021, 47, 21276–21284. [Google Scholar] [CrossRef]
- Li, J.H. Improving the mechanical and ceramifiable properties of low temperature prepared silicone rubber composites. Mater. Res. Express. 2021, 8, 095203. [Google Scholar] [CrossRef]
- Yang, Z.; He, J.Y.; Yang, R. The effects of phosphorus-based flame retardants and octaphenyl polyhedral oligomeric silsesquioxane on the ablative and flame-retardation properties of room temperature vulcanized silicone rubber insulating composites. Polym. Degrad. Stab. 2016, 125, 140–147. [Google Scholar] [CrossRef]
- Ying, R.; Wei, L.F.; Li, W.M.; Yuan, D.D.; Yang, Y.Y.; Cai, X.F. Synthesis of silicic poly carbonyl urea and its flame-retardant effect on polypropylene for char forming. J. Therm. Anal. Calorim. 2019, 137, 1267–1277. [Google Scholar] [CrossRef]
- Jiang, J.; Cheng, Y.B.; Liu, Y.; Wang, Q.; He, Y.S.; Wang, B.W. Intergrowth charring for flame-retardant glass fabric-reinforced epoxy resin composites. J. Mater Chem. A 2015, 3, 4284–4290. [Google Scholar] [CrossRef]
- Gong, X.H.; Shen, Y.C.; Wang, T.W. Improved ceramifiable properties of EVA composites with whitened and capsulized red phosphorus (WCRP). RSC Adv. 2016, 6, 96984–96989. [Google Scholar] [CrossRef]
- Wang, B.B.; Tang, Q.B.; Hong, N.N.; Song, L.; Wang, L.; Shi, Y.Q.; Hu, Y. Effect of cellulose acetate butyrate microencapsulated ammonium polyphosphate on the flame retardancy, mechanical, electrical, and thermal properties of intumescent flame-retardant ethylene–vinyl acetate copolymer/micro encapsulated ammonium polyphosphate/polyamide-6 blends. ACS. App. Mater. Inter. 2011, 3, 3754–3760. [Google Scholar] [CrossRef]
- Basak, S.; Wazed, A.S. Sodium tri-polyphosphate in combination with pomegranate rind extracts as a novel fire-retardant composition for cellulosic polymer. J. Therm. Anal. Calorim. 2019, 137, 1233–12347. [Google Scholar] [CrossRef]
- Hu, S.; Chen, F.; Li, J.G.; Shen, Q.; Huang, Z.X.; Zhang, L.M. The ceramifying process and mechanical properties of silicone rubber/ammonium polyphosphate/ aluminium hydroxide/mica composites. Polym. Degrad. Stab. 2016, 126, 196–203. [Google Scholar] [CrossRef]
- Zhao, D.; Shen, Y.C.; Wang, T.W. Ceramifiable EVA/APP/SGF composites for improved ceramifiable properties. Polym Degrad. Stab. 2018, 150, 140–147. [Google Scholar] [CrossRef]
- Hu, S.; Chen, F.; Li, J.G.; Shen, Q.; Huang, Z.X.; Zhang, L.M. The microstructure evolution and mechanical properties of ammonium polyphosphate/aluminium hydroxide/mica during thermal reaction. J. Cera. Proces. Res. 2016, 17, 858–864. [Google Scholar]
- Lu, L.G.; Guo, N.; Qian, X.D.; Yang, S.S.; Wang, X.B.; Jin, J.; Shao, G.S. Thermal degradation and combustion behavior of intumescent flame-retardant polypropylene with novel phosphorus-based flame retardants. J. Appl. Polym. Sci. 2018, 135, 45962. [Google Scholar] [CrossRef]
- Gong, W.; Ni, J.L.; Zhu, B.L. Survey on Occupational Hazards in Nine Crystal Silicon Solar Cell Manufactories Environ. Occup. Med. 2014, 12, 957–963. [Google Scholar]
- Rodrigo, P.D. Fire Performance Polymer Compising Glass Composition. World Patent WO. 139011, 2 June 2010. [Google Scholar]
- Lou, F.P.; Wu, K.; Wang, Q.; Qian, Z.Y.; Li, S.J.; Guo, W.H. Improved flame-retardant and ceramifiable properties of EVA composites by combination of ammonium polyphosphate and aluminum hydroxide. Polymers 2019, 11, 125. [Google Scholar] [CrossRef] [Green Version]
- Dina, H.A.; Emad, M.E.; Yasser, M.Z.; Fouad, I.E.; Thomas, F.; Denis, V.K. Thermal shock resistance of pressureless sintered SiC/AlN ceramic composites. Mater. Res. Express. 2017, 5, 15506. [Google Scholar] [CrossRef] [Green Version]
- Gong, X.H.; Wu, T.Y.; Ma, J.; Dong, Z.; Wang, T.W.; Shen, Y.C. Improved self-supporting property of ceramifying silicone rubber composites by forming crystalline phase at high temperatures. J. Alloy. Compos. 2017, 706, 322–329. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, W.; Jiang, B.Z. Ceramization and oxidation behaviors of silicone rubber ablative composite under oxyacetylene flame. Ceramic. Int. 2013, 39, 1575–1581. [Google Scholar] [CrossRef]
- Lou, F.P.; Cheng, L.H.; Li, Q.Y.; Wei, T.; Guan, X.Y.; Guo, W.H. The combination of glass dust and glass fiber as fluxing agents for ceramifiable silicone rubber composites. RSC Adv. 2017, 7, 38805–38811. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Long, Q.Y.; Duan, D.J. Effect of sintering temperatures on properties of BaO–B2O3–SiO2–Al2O3 glass/silica composites for cbga packages. Mater. Electron. 2016, 27, 2206–2211. [Google Scholar] [CrossRef]
- Gong, X.H.; Wang, T.W. Optimisation of the ceramic-like body for ceramifiable EVA-based composites. Sci. Eng. Compos. Mater. 2016, 24, 599–608. [Google Scholar] [CrossRef] [Green Version]
- Levchik, S.V.; Camino, G.; Costa, L.; Levchik, G.F. Mechanism of action of phosphorus-based flame retardants in nylon 6. I. Ammonium polyphosphate. Fire. Mater. 1995, 19, 1–10. [Google Scholar] [CrossRef]
- Pan, Y.Q.; Guo, Z.H.; Ran, S.Y.; Fang, Z.P.; Gao, D.; Cai, Y.F.; Shen, H.Y.; He, Y. Improved flame retardant of intumescent flame retardant flame-retarded high density polyethylene with fullerene decorated by iron compound. Express. Polym. Lett. 2019, 13, 835–843. [Google Scholar] [CrossRef]
- Zhang, X.P.; Guan, Y.Y.; Xie, Y.; Qiu, D. “House-of-cards” structures in silicone rubber composites for superb anti-collapsing performance at medium high temperature. RSC Adv. 2016, 6, 7970–7976. [Google Scholar] [CrossRef]
- Gao, Z.X.; Ren, X.X.; Zhao, M.X.; Hou, B.H. On the morphology of α-cristobalite. J. Chin. Cera Soc. 1998, 1, 99–104. [Google Scholar]
- Zhao, D.; Shen, Y.C.; Wang, T.W. Three-dimensional cross-linking structures in ceramifiable EVA composites for improving self-supporting property and ceramifiable properties at high temperature. Polym. Degrad. Stab. 2019, 162, 94–101. [Google Scholar] [CrossRef]
Composition | SR | SGFs | STPP | DCBP |
---|---|---|---|---|
SS | 100 | 100 | - | 2 |
SSP-1 | 100 | 91 | 9 | 2 |
SSP-2 | 100 | 82 | 18 | 2 |
Composition | LOI (%) |
---|---|
SS | 26.5 ± 0.1 |
SSP-1 | 26.0 ± 0 |
SSP-2 | 25.5 ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, D.; Kong, L.; Wang, J.; Jiang, G.; Zhang, J.; Shen, Y.; Wang, T. Ceramifiable Silicone Rubber Composites with Enhanced Self-Supporting and Ceramifiable Properties. Polymers 2022, 14, 1944. https://doi.org/10.3390/polym14101944
Zhao D, Kong L, Wang J, Jiang G, Zhang J, Shen Y, Wang T. Ceramifiable Silicone Rubber Composites with Enhanced Self-Supporting and Ceramifiable Properties. Polymers. 2022; 14(10):1944. https://doi.org/10.3390/polym14101944
Chicago/Turabian StyleZhao, Dong, Lingcheng Kong, Jiaxin Wang, Guodong Jiang, Jun Zhang, Yucai Shen, and Tingwei Wang. 2022. "Ceramifiable Silicone Rubber Composites with Enhanced Self-Supporting and Ceramifiable Properties" Polymers 14, no. 10: 1944. https://doi.org/10.3390/polym14101944
APA StyleZhao, D., Kong, L., Wang, J., Jiang, G., Zhang, J., Shen, Y., & Wang, T. (2022). Ceramifiable Silicone Rubber Composites with Enhanced Self-Supporting and Ceramifiable Properties. Polymers, 14(10), 1944. https://doi.org/10.3390/polym14101944