Edible Biopolymers-Based Materials for Food Applications—The Eco Alternative to Conventional Synthetic Packaging
Abstract
:1. Introduction
2. Materials and Methods
- Evaluation of physical and optical properties
- The evaluation of thickness and retraction ratio
- The determination of color, transmittance, and opacity
- Solubility evaluation
- The microbiological assessments
- Statistical analysis
3. Results
4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Topuza, F.; Uyarb, T. Antioxidant, antibacterial and antifungal electrospun nanofibers for food packaging applications. Food Res. Int. 2020, 130, 108927. [Google Scholar] [CrossRef]
- Nedovic, V.; Kalusevic, A.; Manojlovic, V.; Levic, S.; Bugarski, B. An overview of encapsulation technologies for food applications. Procedia Food Sci. 2011, 1, 1806–1815. [Google Scholar] [CrossRef] [Green Version]
- González, A.; Gastelú, G.; Barrera, G.N.; Ribotta, P.D.; Igarzabal, C.I.Á. Preparation and characterization of soy pro-tein films reinforced with cellulose nanofibers obtained from soybean by-products. Food Hydrocoll. 2019, 89, 758–764. [Google Scholar] [CrossRef]
- Gheorghita, R.; Anchidin-Norocel, L.; Filip, R.; Dimian, M.; Covasa, M. Applications of Biopolymers for Drugs and Probiotics Delivery. Polymers 2021, 13, 2729. [Google Scholar] [CrossRef] [PubMed]
- Jeevahan, J.J.; Chandrasekaran, M.; Venkatesan, S.P.; Sriram, V.; Joseph, G.B.; Mageshwaran, G.; Durairaj, R.B. Scaling up difficulties and commercial aspects of edible films for food packaging: A review. Trends Food Sci. Technol. 2020, 100, 210–222. [Google Scholar] [CrossRef]
- Vinod, A.; Sanjay, M.; Suchart, S.; Jyotishkumar, P. Renewable and sustainable biobased materials: An assessment on biofibers, biofilms, biopolymers and biocomposites. J. Clean. Prod. 2020, 258, 120978. [Google Scholar] [CrossRef]
- Zibaei, R.; Hasanvand, S.; Hashami, Z.; Roshandel, Z.; Rouhi, M.; Guimarães, J.D.T.; Mortazavian, A.M.; Sarlak, Z.; Mohammadi, R. Applications of emerging botanical hydrocolloids for edible films: A review. Carbohydr. Polym. 2021, 256, 117554. [Google Scholar] [CrossRef]
- Massoud, R.; Khodaeii, D.; Hamidi-Esfahani, Z.; Khosravi-Darani, K. The effect of edible probiotic coating on quality of fresh fruits and vegetables: Fresh strawberries as a case study. Biomass Convers. Biorefinery 2021, 1–10. [Google Scholar] [CrossRef]
- Yong, H.; Liu, J. Active packaging films and edible coatings based on polyphenol-rich propolis extract: A review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2106–2145. [Google Scholar] [CrossRef]
- Szabo, K.; Teleky, B.-E.; Mitrea, L.; Călinoiu, L.-F.; Martău, G.-A.; Simon, E.; Varvara, R.-A.; Vodnar, D.C. Active Packaging—Poly(Vinyl Alcohol) Films Enriched with Tomato By-Products Extract. Coatings 2020, 10, 141. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Barkauskaite, S.; Jaiswal, A.K.; Jaiswal, S. Essential oils as additives in active food packaging. Food Chem. 2021, 343, 128403. [Google Scholar] [CrossRef]
- Rehman, A.; Jafari, S.M.; Aadil, R.M.; Assadpour, E.; Randhawa, M.A.; Mahmood, S. Development of active food packaging via incorporation of biopolymeric nanocarriers containing essential oils. Trends Food Sci. Technol. 2020, 101, 106–121. [Google Scholar] [CrossRef]
- Singh, A.; Gu, Y.; Castellarin, S.D.; Kitts, D.D.; Pratap-Singh, A. Development and Characterization of the Edible Packaging Films Incorporated with Blueberry Pomace. Foods 2020, 9, 1599. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, S.B.; Vasile, C. Vegetable Additives in Food Packaging Polymeric Materials. Polymers 2019, 12, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Liu, W.; Tian, B.; Li, D.; Liu, C.; Jiang, B.; Feng, Z. Preparation and Characterization of Coating Based on Protein Nanofibers and Polyphenol and Application for Salted Duck Egg Yolks. Foods 2020, 9, 449. [Google Scholar] [CrossRef] [Green Version]
- Pan, H.M.; Subramanian, A.; Ochs, C.J.; Dewavrin, J.Y.; Beyer, S.; Trau, D.W. Edible polyelectrolyte microcapsules with water-soluble cargo assembled in organic phase. RSC Adv. 2014, 4, 35163–35166. [Google Scholar] [CrossRef]
- Abdollahzadeh, E.; Nematollahi, A.; Hosseini, H. Composition of antimicrobial edible films and methods for assessing their antimicrobial activity: A review. Trends Food Sci. Technol. 2021, 110, 291–303. [Google Scholar] [CrossRef]
- Bishop, G.; Styles, D.; Lens, P.N. Recycling of European plastic is a pathway for plastic debris in the ocean. Environ. Int. 2020, 142, 105893. [Google Scholar] [CrossRef] [PubMed]
- Koller, M.; Braunegg, G. Advanced approaches to produce polyhydroxyalkanoate (PHA) biopolyesters in a sustainable and economic fashion. EuroBiotech J. 2018, 2, 89–103. [Google Scholar] [CrossRef] [Green Version]
- Global Plastic Production 1950–2019, Statista. Available online: https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950 (accessed on 15 September 2021).
- Mohammadhosseini, H.; Alyousef, R.; Lim, N.H.A.S.; Tahir, M.M.; Alabduljabbar, H.; Mohamed, A.M.; Samadi, M. Waste metalized film food packaging as low cost and ecofriendly fibrous materials in the production of sustainable and green concrete composites. J. Clean. Prod. 2020, 258, 120726. [Google Scholar] [CrossRef]
- Sharma, B.; Jain, P. Deciphering the advances in bioaugmentation of plastic wastes. J. Clean. Prod. 2020, 275, 123241. [Google Scholar] [CrossRef]
- Salmenperä, H.; Pitkänen, K.; Kautto, P.; Saikku, L. Critical factors for enhancing the circular economy in waste management. J. Clean. Prod. 2021, 280, 124339. [Google Scholar] [CrossRef]
- Agyeiwaah, E. The contribution of small accommodation enterprises to sustainable solid waste management. J. Hosp. Tour. Manag. 2020, 44, 1–9. [Google Scholar] [CrossRef]
- Singkran, N. Assessment of urban product consumption and relevant waste management. J. Mater. Cycles Waste Manag. 2020, 22, 1019–1026. [Google Scholar] [CrossRef]
- Escursell, S.; Llorach-Massana, P.; Roncero, M.B. Sustainability in e-commerce packaging: A review. J. Clean. Prod. 2021, 280, 124314. [Google Scholar] [CrossRef]
- de Sousa, M.M.; Carvalho, F.M.; Pereira, R.G. Colour and shape of design elements of the packaging labels influence consumer expectations and hedonic judgments of specialty coffee. Food Qual. Prefer. 2020, 83, 103902. [Google Scholar] [CrossRef]
- Comaposada, J.; Gou, P.; Marcos, B.; Arnau, J. Physical properties of sodium alginate solutions and edible wet calcium alginate coatings. LWT-Food Sci. Technol. 2015, 64, 212–219. [Google Scholar] [CrossRef]
- Bagheri, F.; Radi, M.; Amiri, S. Drying conditions highly influence the characteristics of glycerol-plasticized alginate films. Food Hydrocoll. 2019, 90, 162–171. [Google Scholar] [CrossRef]
- Olivas, G.I.; Barbosa-Cánovas, G.V. Alginate–calcium films: Water vapor permeability and mechanical properties as affected by plasticizer and relative humidity. LWT-Food Sci. Technol. 2008, 81, 359–366. [Google Scholar] [CrossRef]
- Thomas, D.; Nath, M.S.; Mathew, N.; Reshmy, R.; Philip, E.; Latha, M.S. Alginate film modified with aloevera gel and cellulose nanocrystals for wound dressing application: Preparation, characterization and in vitro evaluation. J. Drug Deliv. Sci. Technol. 2020, 59, 101894. [Google Scholar] [CrossRef]
- Chen, J.; Wu, A.; Yang, M.; Ge, Y.; Pristijono, P.; Li, J.; Xu, B.; Mi, H. Characterization of sodium alginate-based films incorporated with thymol for fresh-cut apple packaging. Food Control 2021, 126, 108063. [Google Scholar] [CrossRef]
Film | magar (wt %) | malginate (wt %) | mglycerol (wt %) |
---|---|---|---|
B1 | 75.00 | - | 25.00 |
B2 | - | 75.00 | 25.00 |
B3 | 62.50 | 25.00 | 12.50 |
B4 | 50.00 | 37.50 | 12.50 |
B5 | 43.75 | 43.75 | 12.50 |
B6 | 37.50 | 50.00 | 12.50 |
B7 | 25.00 | 62.50 | 12.50 |
B8 | 40.87 | 34.13 | 25.00 |
B9 | 40.625 | 40.625 | 18.75 |
B10 | 50 | 43.75 | 18.75 |
B11 | 31.25 | 50 | 18.75 |
B12 | 31.25 | 43.75 | 18.75 |
B13 | 43.75 | 31.25 | 18.75 |
B14 | 50 | 25 | 25 |
B15 | 25 | 50 | 25 |
B16 | 37.5 | 37.5 | 25 |
Film | First Impression Evaluation | Observations | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Adhesivity | Surface | Flexibility | Multiple Bends | Margins Uniformity | Smell | Taste | Pores Fissures | Oral Solubility | ||
B1 | low | rough | yes | yes | yes | no | sweet | no | low | combination with another biopolymers/increased plasticizer content |
B2 | high | smooth | medium | yes | yes | no | no | no | medium | thin foil, suitable as packaging material |
B3 | high | smooth | yes | yes | yes | no | no | no | very low | suitable for packaging products with high moisture content |
B4 | high | rough | no | no | yes | no | no | no | very low | tendency for exfoliation, brittle |
B5 | low | rough on the outside | medium | yes | yes | no | no | pores | low | unpleasant sensation during taste analysis |
B6 | medium | uneven | medium | yes | yes | no | sweet | pores | medium | slightly crunchy in the oral cavity, cannot be used in this form |
B7 | high | smooth | medium | yes | yes | no | no | pores | medium | the surface in contact with the foil is smooth, the outer has roughness |
B8 | high | uneven | medium | yes | yes | no | sweet | pores | medium | cannot be used in this form |
B9 | high | very smooth | yes | yes | yes | no | no | no | high | unpleasant sensation during taste analysis |
B10 | high | very smooth | yes | yes | yes | no | no | no | low, pleasant sensation | suitable as packaging material |
B11 | low | rough | no | no | yes | no | no | no | medium, unpleasant sensation | hard material, with a tendency to tighten, although it allows bending, cannot be used in this form |
B12 | medium | uneven | medium | yes | yes | no | no | no | medium | unpleasant sensation during taste analysis |
B13 | medium | very smooth | yes | yes | yes | no | sweet | no | medium, very pleasant sensation | crispy, pleasant sensation during taste analysis, good composition for packaging material |
B14 | medium | very smooth | yes | yes | yes | no | no | no | high | the most suitable composition for food supplements packaging material |
B15 | medium | very smooth | medium | yes | yes | no | sweet | no | medium, pleasant sensation | crispy, pleasant sensation during taste analysis, good composition for packaging material |
B16 | low | very smooth | yes | yes | yes | no | sweet | no | medium, pleasant sensation | crispy, pleasant sensation during taste analysis, good composition for packaging material |
Film | Thickness (µm) | Retraction Ratio (%) | Color | ||
---|---|---|---|---|---|
L* | a* | b* | |||
B1 | 70.00 a ± 0.91 | 7.49 c ± 0.25 | 86.22 b ± 0.88 | −4.51 a ± 0.05 | 16.71 c ± 0.01 |
B2 | 43.25 h,i ± 0.83 | 42.84 a,b ± 0.64 | 91.89 a ± 0.27 | −5.68 c,d ± 0.71 | 12.14 f ± 0.33 |
B3 | 50.75 d,e,f,g ± 0.64 | 32.93 a,b,c ± 0.30 | 90.62 a ± 0.33 | −5.46 c,d ± 0.74 | 13.21 e,f ± 0.57 |
B4 | 66.75 a,b ± 0.68 | 11.78 c ± 0.81 | 90.46 a ± 0.27 | −4.85 a,b ± 0.05 | 16.03 c ± 0.05 |
B5 | 36.50 i ± 0.64 | 51.76 a ± 0.36 | 90.81 a ± 0.24 | −5.13 b,c ± 0.21 | 14.51 d ± 0.14 |
B6 | 60.75 b,c ± 0.14 | 19.71 b,c ± 0.71 | 90.41 a ± 0.32 | −5.62 c,d ± 0.33 | 13.88 d,e ± 0.71 |
B7 | 44.75 f,g,h ± 0.83 | 40.86 a ± 0.01 | 91.06 a ± 0.71 | −5.43 b,c ± 0.14 | 13.45 d,e ± 0.27 |
B8 | 54.50 c,d ± 0.51 | 27.97 a,b,c ± 0.46 | 91.03 a ± 0.33 | −5.24 b,c ± 0.13 | 13.78 d,e ± 0.02 |
B9 | 55.60 c,d ± 0.87 | 26.52 a,b ± 0.76 | 92.09 a ± 4.45 | −6.04 d,e ± 0.09 | 24.21 a ± 0.49 |
B10 | 45.20 h,i ± 0.61 | 43.83 a ± 0.32 | 92.77 a ± 0.16 | −6.29 e ± 0.02 | 22.56 b ± 0.17 |
B11 | 46.25 e,f,g,h ± 0.68 | 38.87 a,b ± 0.22 | 92.60 a ± 0.34 | −6.29 e ± 0.08 | 22.54 b ± 0.73 |
B12 | 44.75 f, g, h ± 0.09 | 40.86 a,b ± 0.71 | 92.27 a ± 0.15 | −6.32 ± 0.02 | 23.85 a ± 0.26 |
B13 | 44.00 g,h± 0.08 | 41.85 a ± 0.78 | 92.73 a ± 0.16 | −6.43 e ± 0.02 | 23.19 a,b ± 0.21 |
B14 | 43.50 h,i ± 0.65 | 42.51 a,b ± 0.05 | 92.63 a ± 0.28 | −6.37 e ± 0.03 | 22.62 b ± 0.14 |
B15 | 51.50 d,e,f ± 0.86 | 31.94 a,b,c ± 0.67 | 92.10 a ± 0.33 | −6.42 e ± 0.07 | 23.72 a,b ± 0.75 |
B16 | 53.25 d,e ± 0.38 | 29.62 a,b,c ± 0.33 | 92.74 a ± 0.11 | −6.44 e ± 0.02 | 23.17 a,b ± 0.17 |
Film | Moisture Content (%) | Water Solubility (%) | Water Activity Index aw |
---|---|---|---|
B1 | 18.86 b ± 0.64 | 40.71 h ± 0.41 | 0.417 e,f ± 0.04 |
B2 | 17.12 c ± 0.33 | complete solubilization | 0.427 d,e,f ± 0.33 |
B3 | 10.83 h ± 0.09 | 31.58 j ± 0.25 | 0.414 f ± 0.05 |
B4 | 10.26 i ± 0.61 | 39.63 i ± 0.33 | 0.437 c,d ± 0.66 |
B5 | 9.56 j ± 0.09 | 46.24 f ± 0.56 | 0.434 c,d ± 0.09 |
B6 | 14.17 f ± 0.65 | 40.24 h ± 0.66 | 0.418 e,f ± 0.33 |
B7 | 14.30 f ± 0.33 | 21.73 k ± 0.46 | 0.438 b,c,d ± 0.13 |
B8 | 14.55 f ± 0.07 | 43.00 g ± 0.32 | 0.436 c,d ± 0.66 |
B9 | 12.80 g ± 0.04 | 56.38 ± 0.06 | 0.429 d,e ± 0.90 |
B10 | 14.20 f ± 0.71 | 51.66 c ± 0.32 | 0.443 a,b,c ± 0.81 |
B11 | 13.25 g ± 0.48 | 62.08 d ± 0.30 | 0.418 e,f ± 0.72 |
B12 | 13.21 g ± 0.36 | 60.67 a ± 0.05 | 0.418 e,f ± 0.46 |
B13 | 15.85 e ± 0.05 | 52.75 a ± 0.71 | 0.451 a,b ± 0.33 |
B14 | 22.01 a ± 0.76 | 49.03 e ± 0.18 | 0.457 a ± 0.17 |
B15 | 16.50 d ± 0.31 | 57.52 b,c ± 0.33 | 0.427 d,e,f ± 0.98 |
B16 | 21.85 a ± 0.93 | 58.23 b ± 0.50 | 0.420 e,f ± 0.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gheorghita Puscaselu, R.; Besliu, I.; Gutt, G. Edible Biopolymers-Based Materials for Food Applications—The Eco Alternative to Conventional Synthetic Packaging. Polymers 2021, 13, 3779. https://doi.org/10.3390/polym13213779
Gheorghita Puscaselu R, Besliu I, Gutt G. Edible Biopolymers-Based Materials for Food Applications—The Eco Alternative to Conventional Synthetic Packaging. Polymers. 2021; 13(21):3779. https://doi.org/10.3390/polym13213779
Chicago/Turabian StyleGheorghita Puscaselu, Roxana, Irina Besliu, and Gheorghe Gutt. 2021. "Edible Biopolymers-Based Materials for Food Applications—The Eco Alternative to Conventional Synthetic Packaging" Polymers 13, no. 21: 3779. https://doi.org/10.3390/polym13213779
APA StyleGheorghita Puscaselu, R., Besliu, I., & Gutt, G. (2021). Edible Biopolymers-Based Materials for Food Applications—The Eco Alternative to Conventional Synthetic Packaging. Polymers, 13(21), 3779. https://doi.org/10.3390/polym13213779