Comparative Study of Fire Resistance and Anti-Ageing Properties of Intumescent Fire-Retardant Coatings Reinforced with Conch Shell Bio-Filler
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Materials
2.2.1. Preparation of the Conch Shell Bio-Filler
2.2.2. Preparation of the Intumescent Fire-Retardant Coatings
2.3. Characterization
2.3.1. Fourier Transform Infrared Spectroscopy
2.3.2. Scanning Electron Microscopy
2.3.3. X-Ray Diffraction
2.3.4. Smoke Density Test
2.3.5. Fire Protection Tests
2.3.6. Adhesion Classification Test
2.3.7. Pencil Hardness Test
2.3.8. Cone Calorimeter Test
2.3.9. Thermogravimetric Analysis
2.3.10. Accelerated Ageing Test
3. Results and Discussion
3.1. Morphology and Composition of CSBF
3.2. Fire Protection Tests
3.3. Cone Calorimeter Test
3.4. Smoke Density Test
3.5. Thermal Stability Analysis
3.6. Accelerated Ageing Test
3.7. Flame-Retardant and Smoke-Suppression Mechanisms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yan, L.; Xu, Z.; Wang, X. Synergistic effects of organically modified montmorillonite on the flame-retardant and smoke suppression properties of transparent intumescent fire-retardant coatings. Prog. Org. Coat. 2018, 122, 107–118. [Google Scholar] [CrossRef]
- Xu, Z.; Zhou, H.; Yan, L.; Jia, H. Comparative study of the fire protection performance and thermal stability of intumescent fire-retardant coatings filled with three types of clay nano-fillers. Fire Mater. 2019, 44, 112–120. [Google Scholar] [CrossRef]
- Yan, L.; Xu, Z.; Liu, D. Synthesis and application of novel magnesium phosphate ester flame retardants for transparent intumescent fire-retardant coatings applied on wood substrates. Prog. Org. Coat. 2019, 129, 327–337. [Google Scholar] [CrossRef]
- Xu, Z.; Xie, X.; Yan, L.; Feng, Y. Fabrication of organophosphate-grafted kaolinite and its effect on the fire-resistant and anti-ageing properties of amino transparent fire-retardant coatings. Polym. Degrad. Stab. 2021, 188, 109589. [Google Scholar] [CrossRef]
- Nguyen, T.; Dao, P.; Duong, K.; Duong, Q.; Vu, Q.; Nguyen, A.; Mac, V.; Le, T. Effect of R-TiO2 and ZnO nanoparticles on the UV-shielding efficiency of water-borne acrylic coating. Prog. Org. Coat. 2017, 110, 114–121. [Google Scholar] [CrossRef]
- Alongi, J.; Han, Z.; Bourbigot, S. Intumescence: Tradition versus novelty. A comprehensive review. Prog. Polym. Sci. 2015, 51, 28–73. [Google Scholar] [CrossRef]
- Li, Y.; Feng, Y.; Xu, Z.; Yan, L.; Xie, X.; Wang, Z. Synergistic effect of clam shell bio-filler on the fire-resistance and char formation of intumescent fire-retardant coatings. J. Mater. Res. Technol. 2020, 9, 14718–14728. [Google Scholar] [CrossRef]
- Yew, M.C.; Yew, M.K.; Saw, L.; Ng, T.; Durairaj, R.; Beh, J. Influences of nano bio-filler on the fire-resistive and mechanical properties of water-based intumescent coatings. Prog. Org. Coat. 2018, 124, 33–40. [Google Scholar] [CrossRef]
- Nasir, K.; Sulong, N.; Johan, M.; Afifi, A. Synergistic effect of industrial- and bio-fillers waterborne intumescent hybrid coatings on flame retardancy, physical and mechanical properties. Prog. Org. Coat. 2020, 149, 105905. [Google Scholar] [CrossRef]
- Marcin, M.; Aleksieiev, A.; Justyna, M.; Krzysztof, S. Common Nettle (Urtica dioica L.) as an Active Filler of Natural Rubber Biocomposites. Materials 2021, 14, 1616. [Google Scholar] [CrossRef]
- Samit, N.; Nuchnapa, T. Development of biomaterial fillers using eggshells, water hyacinth fibers, and banana fibers for green concrete construction. Constr. Build. Mater. 2021, 283, 122627. [Google Scholar] [CrossRef]
- Yew, M.C.; Ramli Sulong, N.; Yew, M.K.; Amalina, M.; Johan, M. Eggshells: A novel bio-filler for intumescent flame-retardant coatings. Prog. Org. Coat. 2015, 81, 116–124. [Google Scholar] [CrossRef]
- Wu, H.; Xiao, D.; Lu, J.; Li, T.; Jiao, C.; Li, S.; Lu, P.; Zhang, Z. Preparation and Properties of Biocomposite Films Based on Poly(vinyl alcohol) Incorporated with Eggshell Powder as a Biological Filler. J. Polym. Environ. 2020, 28, 1–9. [Google Scholar] [CrossRef]
- Xu, Z.; Chu, Z.; Yan, L.; Chen, H.; Jia, H.; Tang, W. Effect of chicken eggshell on the flame-retardant and smoke suppression properties of an epoxy-based traditional APP-PER-MEL system. Polym. Compos. 2019, 40, 2712–2723. [Google Scholar] [CrossRef]
- Oladele, I.; Makinde-Isola, B.; Agbeboh, N.; Iwarere, B. Thermal Stability, Moisture Uptake Potentials and Mechanical Properties of Modified Plant Based Cellulosic Fiber-Animal Wastes Hybrid Reinforced Epoxy Composites. J. Nat. Fibers 2020, 1–16. [Google Scholar] [CrossRef]
- Moustafa, H.; Youssef, A.; Darwish, S.; Darwish, N. Characterization of bio-filler derived from seashell wastes and its effect on the mechanical, thermal, and flame retardant properties of ABS composites. Polym. Compos. 2017, 38, 2788–2797. [Google Scholar] [CrossRef]
- Kumar, K.; Pavendhan, R.; Subramaniyan, G.; Loganathan, T. Effect of bio waste (conch shell) particle dispersion on the performance of GFRP composite. J. Mater. Res. Technol. 2020, 9, 7123–7135. [Google Scholar] [CrossRef]
- Khalil, H.; Chong, E.; Owolabi, F.; Asniza, M.; Tye, Y.; Tajarudin, H.; Paridah, M.; Rizal, S. Microbial-induced CaCO3 filled seaweed-based film for green plasticulture application. J. Clean. Prod. 2018, 199, 150–163. [Google Scholar] [CrossRef]
- Hong, L.; Hu, X.; Rao, W.; Zhang, X. Flame retardancy and crack resistance of transparent intumescent fire-resistive coatings. J. Appl. Polym. Sci. 2015, 132, 137–180. [Google Scholar] [CrossRef]
- Wang, P.; Yang, F.; Cai, Z. Synergistic effect of organo-montmorillonite and DOPO-based oligomer on improving the flame retardancy of epoxy thermoset. J. Therm. Anal. Calorim. 2017, 128, 1429–1441. [Google Scholar] [CrossRef]
- Ashokan, A.; Rajendran, V.; Kumar, T.S.; Jayaraman, G. Eggshell derived hydroxyapatite microspheres for chromatographic applications by a novel dissolution-precipitation method. Ceram. Int. 2021, 47, 18575–18583. [Google Scholar] [CrossRef]
- Trentini, A.; Biron, D.; Duarte, J.; Santos, V. Polyurethane membranes reinforced with calcium carbonate and oyster powder for application in the separation of CH4/CO2 from greenhouse gases. Braz. J. Chem. Eng. 2021, 1–19. [Google Scholar] [CrossRef]
- Wang, J.; Wang, G. Influences of montmorillonite on fire protection, water and corrosion resistance of waterborne intumescent fire retardant coating for steel structure. Surf. Coat. Technol. 2014, 239, 177–184. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, M. Study on the effects of aging by accelerated weathering on the intumescent fire retardant coating for steel elements. Eng. Fail. Anal. 2020, 118, 104920. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, G. The novel epoxy/PEPA phosphate flame retardants: Synthesis, characterization and application in transparent intumescent fire resistant coatings. Prog. Org. Coat. 2016, 97, 1–9. [Google Scholar] [CrossRef]
- Zhu, F.; Xin, Q.; Feng, Q.; Liu, R.; Li, K. Influence of nano-silica on flame resistance behavior of intumescent flame retardant cellulosic textiles: Remarkable synergistic effect? Surf. Coat. Technol. 2016, 294, 90–94. [Google Scholar] [CrossRef]
- Das, S.; Pandey, P.; Mohanty, S.; Nayak, S. Effect of nanosilica on the physicochemical, morphological and curing characteristics of transesterified castor oil based polyurethane coatings—ScienceDirect. Prog. Org. Coat. 2016, 97, 233–243. [Google Scholar] [CrossRef]
- Gómez-Fernández, S.; Ugarte, L.; Peña-Rodriguez, C.; Corcuera, M.; Eceiza, A. The effect of phosphorus containing polyol and layered double hydroxides on the properties of a castor oil based flexible polyurethane foam. Polym. Degrad. Stab. 2016, 132, 41–51. [Google Scholar] [CrossRef]
- Makhlouf, G.; Hassan, M.; Nour, M.; Abdel-Monem, Y.; Abdelkhalik, A. Evaluation of fire performance of linear low-density polyethylene containing novel intumescent flame retardant. J. Therm. Anal. Calorim. 2017, 130, 1031–1041. [Google Scholar] [CrossRef]
- Ullah, S.; Ahmad, F. Effects of zirconium silicate reinforcement on expandable graphite based intumescent fire retardant coating. Polym. Degrad. Stab. 2014, 103, 49–62. [Google Scholar] [CrossRef]
- Deng, C.L.; Du, S.; Zhao, J.; Shen, Z.; Deng, C.; Wang, Y. An intumescent flame retardant polypropylene system with simultaneously improved flame retardancy and water resistance. Polym. Degrad. Stab. 2014, 108, 97–107. [Google Scholar] [CrossRef]
- Zheng, Z.; Liu, Y.; Zhang, L.; Wang, H. Synergistic effect of expandable graphite and intumescent flame retardants on the flame retardancy and thermal stability of polypropylene. J. Mater. Sci. 2016, 51, 5857–5871. [Google Scholar] [CrossRef]
- Hu, Q.; Peng, P.; Peng, S.; Liu, J.; Liu, X.; Zou, L.; Chen, J. Flame-retardant epoxy resin based on aluminum monomethylphosphinate. J. Therm. Anal. Calorim. 2017, 128, 201–210. [Google Scholar] [CrossRef]
- Nikolic, M.; Nguyen, H.; Daugaard, A.; Löf, D.; Mortensen, K.; Barsberg, S.; Sanadi, A. Influence of surface modified nano silica on alkyd binder before and after accelerated weathering. Polym. Degrad. Stab. 2016, 126, 134–143. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Wang, G. Influence of PEPA-containing polyether structure on fire protection of transparent fire-resistant coatings. J. Coat. Technol. Res. 2016, 13, 457–468. [Google Scholar] [CrossRef]
- Hu, X.; Wang, G.; Huang, Y. Study on the preparation and properties of novel transparent fire-resistive coatings. J. Coat. Technol. Res. 2013, 10, 717–726. [Google Scholar] [CrossRef]
- Wang, G.; Huang, Y.; Hu, X. Synthesis of a novel phosphorus-containing polymer and its application in amino intumescent fire resistant coating. Prog. Org. Coat. 2013, 76, 188–193. [Google Scholar] [CrossRef]
Samples | IFR | CSBF | Waterborne Epoxy Resin | Defoamer | Dispersant | Waterborne Epoxy Hardener |
---|---|---|---|---|---|---|
FRC0 | 60 | 0 | 35 | 0.5 | 0.5 | 4 |
FRC1 | 59 | 1 | 35 | 0.5 | 0.5 | 4 |
FRC2 | 58 | 2 | 35 | 0.5 | 0.5 | 4 |
FRC3 | 57 | 3 | 35 | 0.5 | 0.5 | 4 |
FRC4 | 55 | 5 | 35 | 0.5 | 0.5 | 4 |
Sample | T0/°C | Tm/°C | PMLR/ (%·°C−1) | Weight Loss/% | Wexp/% | Wtheo/% | ∆W/% | |||
---|---|---|---|---|---|---|---|---|---|---|
100~310 °C | 310~440 °C | 440~570 °C | 570~800 °C | |||||||
FRC0 | 203.2 | 366.9 | 0.7 | 19.9 | 37.4 | 9.5 | 2.8 | 28.6 | 17.8 | 10.8 |
FRC1 | 217.6 | 366.5 | 0.7 | 19.2 | 37.1 | 9.7 | 2.1 | 31.1 | 18.1 | 13.0 |
FRC2 | 211.6 | 364.0 | 0.7 | 19.0 | 36.1 | 10.3 | 2.1 | 31.4 | 18.4 | 13.0 |
FRC3 | 222.6 | 363.2 | 0.6 | 23.3 | 30.1 | 9.4 | 2.2 | 34.6 | 18.7 | 15.9 |
FRC4 | 210.5 | 363.0 | 0.7 | 21.4 | 34.0 | 9.1 | 2.3 | 31.7 | 19.3 | 12.3 |
FTIR Band (cm−1) | Functional Groups | Observations | |
---|---|---|---|
Intensity | Changes | ||
1016 | C–O stretching | Strong | Significantly decreased |
1249 | P=O stretching | Weak | Slightly decreased |
1552 | N–H stretching | Strong | Disappeared |
1645 | C=N stretching | Weak | Slightly decreased |
1438, 3420, 3470 | –NH2 stretching | Strong | Disappeared |
FTIR Band (cm−1) | Functional Groups | Observations | |
---|---|---|---|
Intensity | Changes | ||
669, 874 | P–O–P stretching | Strong | Disappeared |
795 | C–H deformation for benzene ring | Strong | New, increased |
1016 | C–O stretching | Strong | Disappeared |
994, 1049 | P–O–C stretching | Strong | New, increased |
1084 | PO32− stretching | Strong | Disappeared |
1139 | C–O–C stretching | Strong | New, increased |
1284 | P=O stretching | Strong | New, increased |
1552 | N–H stretching | Strong | Disappeared |
3417, 3470 | –NH2 stretching | Strong | Disappeared |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Liu, H.; Yan, L.; Feng, Y. Comparative Study of Fire Resistance and Anti-Ageing Properties of Intumescent Fire-Retardant Coatings Reinforced with Conch Shell Bio-Filler. Polymers 2021, 13, 2620. https://doi.org/10.3390/polym13162620
Wang F, Liu H, Yan L, Feng Y. Comparative Study of Fire Resistance and Anti-Ageing Properties of Intumescent Fire-Retardant Coatings Reinforced with Conch Shell Bio-Filler. Polymers. 2021; 13(16):2620. https://doi.org/10.3390/polym13162620
Chicago/Turabian StyleWang, Feiyue, Hui Liu, Long Yan, and Yuwei Feng. 2021. "Comparative Study of Fire Resistance and Anti-Ageing Properties of Intumescent Fire-Retardant Coatings Reinforced with Conch Shell Bio-Filler" Polymers 13, no. 16: 2620. https://doi.org/10.3390/polym13162620
APA StyleWang, F., Liu, H., Yan, L., & Feng, Y. (2021). Comparative Study of Fire Resistance and Anti-Ageing Properties of Intumescent Fire-Retardant Coatings Reinforced with Conch Shell Bio-Filler. Polymers, 13(16), 2620. https://doi.org/10.3390/polym13162620