Tamisolve® NxG as an Alternative Non-Toxic Solvent for the Preparation of Porous Poly (Vinylidene Fluoride) Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Membrane Preparation
2.3. Membrane Characterization
2.3.1. Phase Diagram
2.3.2. Scanning Electron Microscopy (SEM)
2.3.3. Viscosity
2.3.4. Pore Size and Pore Size Distribution
2.3.5. Thickness, Porosity and Contact Angle
2.3.6. Atomic Force Microscopy (AFM)
2.3.7. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR)
2.3.8. Water Permeability Test and Filtration Experiments
3. Results and Discussion
3.1. Phase Separation of PVDF /Tamisolve® NxG Systems
3.2. Morphology and Viscosity
3.3. Pore Size and Pore Size Distribution
3.4. Thickness, Porosity and Contact Angle
3.5. AFM Analysis
3.6. ATR-FTIR Spectra
3.7. Filtration Properties
3.7.1. Water Permeability Results
3.7.2. Filtration Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European-Commission Chemicals Strategy for Sustainability Towards a Toxic-Free Environment; European Commission: Brussels, Belgium, 2020; Volume 98.
- European Commission Summary for Policymakers. Climate Change 2013—The Physical Science Basis; Intergovernmental Panel on Climate Change, Ed.; Cambridge University Press: Cambridge, UK, 2019; pp. 1–30. ISBN 9788578110796. [Google Scholar]
- Clarke, C.J.; Tu, W.-C.; Levers, O.; Bröhl, A.; Hallett, J.P. Green and Sustainable Solvents in Chemical Processes. Chem. Rev. 2018, 118, 747–800. [Google Scholar] [CrossRef] [PubMed]
- Cvjetko Bubalo, M.; Vidović, S.; Radojčić Redovniković, I.; Jokić, S. Green solvents for green technologies. J. Chem. Technol. Biotechnol. 2015, 90, 1631–1639. [Google Scholar] [CrossRef]
- Figoli, A.; Marino, T.; Simone, S.; Di Nicolò, E.; Li, X.-M.M.; He, T.; Tornaghi, S.; Drioli, E. Towards non-toxic solvents for membrane preparation: A review. R. Soc. Chem. 2014, 16, 4034–4059. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, J.; Notiyal, D. Green Chemistry: Challenges and Opportunities; Part One. Membrane processes and membrane preparation. Int. J. Sci. Res. Sci. Technol. 2020, 314–320. [Google Scholar]
- Zhenova, A. Challenges in the development of new green solvents for polymer dissolution. Polym. Int. 2020, 69, 895–901. [Google Scholar] [CrossRef]
- Warsinger, D.M.; Chakraborty, S.; Tow, E.W.; Plumlee, M.H.; Bellona, C.; Loutatidou, S.; Karimi, L.; Mikelonis, A.M.; Achilli, A.; Ghassemi, A.; et al. A review of polymeric membranes and processes for potable water reuse. Prog. Polym. Sci. 2018, 81, 209–237. [Google Scholar] [CrossRef]
- Figoli, A.; Marino, T.; Galiano, F. Polymeric membranes in biorefinery. In Membrane Technologies for Biorefining; Part One. Membrane processes and membrane preparation; Woodhead Publishing: Sawston, UK, 2016; ISBN 9780081004524. [Google Scholar]
- Ursino, C.; Castro-Muñoz, R.; Drioli, E.; Gzara, L.; Albeirutty, M.H.; Figoli, A. Progress of nanocomposite membranes for water treatment. Membranes 2018, 8, 18. [Google Scholar] [CrossRef] [Green Version]
- Galiano, F.; Song, X.; Marino, T.; Boerrigter, M.; Saoncella, O.; Simone, S.; Faccini, M.; Chaumette, C.; Drioli, E.; Figoli, A. Novel photocatalytic PVDF/Nano-TiO2 hollow fibers for Environmental remediation. Polymers 2018, 10, 1134. [Google Scholar] [CrossRef] [Green Version]
- Peng, N.; Widjojo, N.; Sukitpaneenit, P.; Teoh, M.M.; Lipscomb, G.G.; Chung, T.-S.; Lai, J.-Y. Evolution of polymeric hollow fibers as sustainable technologies: Past, present, and future. Prog. Polym. Sci. 2012, 37, 1401–1424. [Google Scholar] [CrossRef]
- Suwaileh, W.; Pathak, N.; Shon, H.; Hilal, N. Forward osmosis membranes and processes: A comprehensive review of research trends and future outlook. Desalination 2020, 485, 114455. [Google Scholar] [CrossRef]
- Lalia, B.S.; Kochkodan, V.; Hashaikeh, R.; Hilal, N. A review on membrane fabrication: Structure, properties and performance relationship. Desalination 2013, 326, 77–95. [Google Scholar] [CrossRef]
- Guillen, G.R.; Pan, Y.; Li, M.; Hoek, E.M.V.V. Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review. Ind. Eng. Chem. Res. 2011, 50, 3798–3817. [Google Scholar] [CrossRef]
- Ahmad, M.S.; Mohshim, D.F.; Nasir, R.; Mannan, H.A.; Mukhtar, H. Effect of solvents on the morphology and performance of Polyethersulfone (PES) polymeric membranes material for CO2/CH4 separation. IOP Conf. Ser. Mater. Sci. Eng. 2018, 290, 12074. [Google Scholar] [CrossRef]
- See Toh, Y.H.; Lim, F.W.; Livingston, A.G. Polymeric membranes for nanofiltration in polar aprotic solvents. J. Memb. Sci. 2007, 301, 3–10. [Google Scholar] [CrossRef]
- GUAN, R.; DAI, H.; LI, C.; LIU, J.; XU, J. Effect of casting solvent on the morphology and performance of sulfonated polyethersulfone membranes. J. Memb. Sci. 2006, 277, 148–156. [Google Scholar] [CrossRef]
- Gohil, J.M.; Choudhury, R.R. Introduction to Nanostructured and Nano-enhanced Polymeric Membranes: Preparation, Function, and Application for Water Purification. In Nanoscale Materials in Water Purification; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780128139271. [Google Scholar]
- Ismail, A.F.; Khulbe, K.C.; Matsuura, T. Reverse Osmosis; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780128114681. [Google Scholar]
- Kang, G.D.; Cao, Y.M. Application and modification of poly(vinylidene fluoride) (PVDF) membranes—A review. J. Memb. Sci. 2014, 463, 145–165. [Google Scholar] [CrossRef]
- Smolders, C.A.; Reuvers, A.J.; Boom, R.M.; Wienk, I.M. Microstructures in phase-inversion membranes. Part 1. Formation of macrovoids. J. Memb. Sci. 1992, 73, 259–275. [Google Scholar] [CrossRef] [Green Version]
- European Chemicals Agency. How to Comply with REACH Restriction 71, Guideline for Users of NMP (1-Methyl-2-Pyrrolidone); ECHA: Helsinki, Finland, 2019; ISBN 9789294812148. [Google Scholar]
- ECHA. Annex XVII to Reach—Conditions of Restriction. Entry 69 Methanol; ECHA: Helsinki, Finland, 2019; pp. 9–11. [Google Scholar]
- Available online: www.echa.europa.eu; https://echa.europa.eu/registry-of-restriction-intentions/-/dislist/details/0b0236e18213ec9e (accessed on 26 July 2021).
- ECHA. Annex XV Restriction Report Proposal for a Restriction Substance Name: Dimethylformamide (DMF) Cas Number: 68-12-2 Contact Details of the Dossier Submitter; ECHA: Helsinki, Finland, 2016. [Google Scholar]
- Available online: www.echa.europa.eu; https://echa.europa.eu/it/registry-of-restriction-intentions/-/dislist/details/0b0236e1844d552a (accessed on 26 July 2021).
- Park, S.-H.; Alammar, A.; Fulop, Z.; Pulido, B.A.; Nunes, S.P.; Szekely, G. Hydrophobic thin film composite nanofiltration membranes derived solely from sustainable sources. Green Chem. 2021, 23, 1175–1184. [Google Scholar] [CrossRef]
- Dong, X.; Al-Jumaily, A.; Escobar, I. Investigation of the Use of a Bio-Derived Solvent for Non-Solvent-Induced Phase Separation (NIPS) Fabrication of Polysulfone Membranes. Membranes 2018, 8, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassankiadeh, N.T.; Cui, Z.; Kim, J.H.; Shin, D.W.; Lee, S.Y.; Sanguineti, A.; Arcella, V.; Lee, Y.M.; Drioli, E. Microporous poly(vinylidene fluoride) hollow fiber membranes fabricated with PolarClean as water-soluble green diluent and additives. J. Memb. Sci. 2015, 479, 204–212. [Google Scholar] [CrossRef]
- Wang, H.H.; Jung, J.T.; Kim, J.F.; Kim, S.; Drioli, E.; Lee, Y.M. A novel green solvent alternative for polymeric membrane preparation via nonsolvent-induced phase separation (NIPS). J. Memb. Sci. 2019, 574, 44–54. [Google Scholar] [CrossRef]
- Ursino, C.; Russo, F.; Ferrari, R.M.; De Santo, M.P.; Di Nicolò, E.; He, T.; Galiano, F.; Figoli, A. Polyethersulfone hollow fiber membranes prepared with Polarclean® as a more sustainable solvent. J. Memb. Sci. 2020, 608, 118216. [Google Scholar] [CrossRef]
- Dong, X.; Shannon, H.D.; Escobar, I.C. Investigation of polarclean and gamma-valerolactone as solvents for polysulfone membrane fabrication. ACS Symp. Ser. 2018, 1310, 385–403. [Google Scholar]
- Marino, T.; Blasi, E.; Tornaghi, S.; Di, E.; Figoli, A.; Di Nicolo, E.; Figoli, A. Polyethersulfone membranes prepared with Rhodiasolv (R) Polarclean as water soluble green solvent. J. Memb. Sci. 2018, 549, 192–204. [Google Scholar] [CrossRef]
- Sherwood, J.; De bruyn, M.; Constantinou, A.; Moity, L.; McElroy, C.R.; Farmer, T.J.; Duncan, T.; Raverty, W.; Hunt, A.J.; Clark, J.H. Dihydrolevoglucosenone (Cyrene) as a bio-based alternative for dipolar aprotic solvents. Chem. Commun. 2014, 50, 9650–9652. [Google Scholar] [CrossRef] [PubMed]
- Camp, J.E. Bio-available Solvent Cyrene: Synthesis, Derivatization, and Applications. ChemSusChem 2018, 11, 3048–3055. [Google Scholar] [CrossRef]
- Marino, T.; Galiano, F.; Molino, A.; Figoli, A. New frontiers in sustainable membrane preparation: CyreneTM as green bioderived solvent. J. Memb. Sci. 2019, 580, 224–234. [Google Scholar] [CrossRef]
- Carner, C.A.; Croft, C.F.; Kolev, S.D.; Almeida, M.I.G.S. Green solvents for the fabrication of polymer inclusion membranes (PIMs). Sep. Purif. Technol. 2020, 239, 116486. [Google Scholar] [CrossRef]
- Russo, F.; Galiano, F.; Pedace, F.; Arico’, F.; Figoli, A. Dimethyl Isosorbide As a Green Solvent for Sustainable Ultrafiltration and Microfiltration Membrane Preparation. ACS Sustain. Chem. Eng. 2020, 8, 659–668. [Google Scholar] [CrossRef]
- Marino, T.; Russo, F.; Figoli, A. The Formation of Polyvinylidene Fluoride Membranes with Tailored Properties via Vapour/Non-Solvent Induced Phase Separation. Membranes 2018, 8, 71. [Google Scholar] [CrossRef] [Green Version]
- Marino, T.; Blefari, S.; Di Nicolò, E.; Figoli, A. A more sustainable membrane preparation using triethyl phosphate as solvent. Green Process. Synth. 2017, 6, 295–300. [Google Scholar] [CrossRef]
- Fadhil, S.; Marino, T.; Makki, H.F.; Alsalhy, Q.F.; Blefari, S.; Macedonio, F.; Di Nicolò, E.; Giorno, L.; Drioli, E.; Figoli, A. Novel PVDF-HFP flat sheet membranes prepared by triethyl phosphate (TEP) solvent for direct contact membrane distillation. Chem. Eng. Process. Process Intensif. 2016, 102, 16–26. [Google Scholar] [CrossRef]
- Benhabiles, O.; Galiano, F.; Marino, T.; Mahmoudi, H.; Lounici, H.; Figoli, A. Preparation and Characterization of TiO2-PVDF/PMMA Blend Membranes Using an Alternative Non-Toxic Solvent for UF/MF and Photocatalytic Application. Molecules 2019, 24, 724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alyarnezhad, S.; Marino, T.; Parsa, J.B.; Galiano, F.; Ursino, C.; Garcìa, H.; Puche, M.; Figoli, A. Polyvinylidene Fluoride-Graphene Oxide Membranes for Dye Removal under Visible Light Irradiation. Polymers 2020, 12, 1509. [Google Scholar] [CrossRef]
- Wu, L.; Sun, J. An improved process for polyvinylidene fluoride membrane preparation by using a water soluble diluent via thermally induced phase separation technique. Mater. Des. 2015, 86, 204–214. [Google Scholar] [CrossRef]
- Rajabzadeh, S.; Maruyama, T.; Sotani, T.; Matsuyama, H. Preparation of PVDF hollow fiber membrane from a ternary polymer/solvent/nonsolvent system via thermally induced phase separation (TIPS) method. Sep. Purif. Technol. 2008, 63, 415–423. [Google Scholar] [CrossRef]
- Sawada, S.; Ursino, C.; Galiano, F.; Simone, S.; Drioli, E.; Figoli, A. Effect of citrate-based non-toxic solvents on poly(vinylidene fluoride) membrane preparation via thermally induced phase separation. J. Memb. Sci. 2015, 493, 232–242. [Google Scholar] [CrossRef]
- Cui, Z.; Hassankiadeh, N.T.; Lee, S.Y.; Woo, K.T.; Lee, J.M.; Sanguineti, A.; Arcella, V.; Lee, Y.M.; Drioli, E. Tailoring novel fibrillar morphologies in poly(vinylidene fluoride) membranes using a low toxic triethylene glycol diacetate (TEGDA) diluent. J. Memb. Sci. 2015, 473, 128–136. [Google Scholar] [CrossRef]
- Gronwald, O.; Weber, M. AGNIQUE AMD 3L as green solvent for polyethersulfone ultrafiltration membrane preparation. J. Appl. Polym. Sci. 2020, 137, 48419. [Google Scholar] [CrossRef]
- Razali, M.; Kim, J.F.; Attfield, M.; Budd, P.M.; Drioli, E.; Lee, Y.M.; Szekely, G. Sustainable wastewater treatment and recycling in membrane manufacturing. Green Chem. 2015, 17, 5196–5205. [Google Scholar] [CrossRef] [Green Version]
- Paseta, L.; Echaide-Górriz, C.; Téllez, C.; Coronas, J. Vapor phase interfacial polymerization: A method to synthesize thin film composite membranes without using organic solvents. Green Chem. 2021, 23, 2449–2456. [Google Scholar] [CrossRef]
- Ji, D.; Xiao, C.; An, S.; Chen, K.; Gao, Y.; Zhou, F.; Zhang, T. Completely green and sustainable preparation of PVDF hollow fiber membranes via melt-spinning and stretching method. J. Hazard. Mater. 2020, 398, 122823. [Google Scholar] [CrossRef]
- Liu, F.; Hashim, N.A.; Liu, Y.; Abed, M.R.M.; Li, K. Progress in the production and modification of PVDF membranes. J. Memb. Sci. 2011, 375, 1–27. [Google Scholar] [CrossRef]
- Russo, F.; Ursino, C.; Avruscio, E.; Desiderio, G.; Perrone, A.; Santoro, S.; Galiano, F.; Figoli, A. Innovative poly (Vinylidene fluoride) (PVDF) electrospun nanofiber membrane preparation using DMSO as a low toxicity solvent. Membranes 2020, 10, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eastman TamiSolve NxG Dipolar Aprotic Solvent. Available online: https://www.eastman.com/Pages/ProductHome.aspx?product=71103844 (accessed on 26 July 2021).
- Marino, T.; Russo, F.; Criscuoli, A.; Figoli, A. TamiSolve® NxG as novel solvent for polymeric membrane preparation. J. Memb. Sci. 2017, 542, 418–429. [Google Scholar] [CrossRef]
- Doyen, W. Film-Supported Polymeric Membranes and Methods of Manufacturing. Patent No. WO 2015/140356 A2, 24 September 2015. [Google Scholar]
- Lujia Bu, Fu Zhou, Charles, R. Kinzie, X.-Q.L. Polyimide Compositions and Methods. U.S. Patent 2016/0208097 A1, 21 July 2016.
- Saïdi, S.; Macedonio, F.; Russo, F.; Hannachi, C.; Drioli, E.; Figoli, A. Preparation and characterization of hydrophobic P (VDF-HFP) flat sheet membranes using Tamisolve® NxG solvent for the treatment of saline water by direct contact membrane distillation and membrane crystallization. Sep. Purif. Technol. 2021, 275, 119144. [Google Scholar] [CrossRef]
- Van Goethem, C.; Magboo, M.M.; Mertens, M.; Thijs, M.; Koeckelberghs, G.; Vankelecom, I.F.J. A scalable crosslinking method for PVDF-based nanofiltration membranes for use under extreme pH conditions. J. Memb. Sci. 2020, 611, 118274. [Google Scholar] [CrossRef]
- Ilyas, A.; Mertens, M.; Oyaert, S.; Vankelecom, I.F.J. Synthesis of patterned PVDF ultrafiltration membranes: Spray-modified non-solvent induced phase separation. J. Memb. Sci. 2020, 612, 118383. [Google Scholar] [CrossRef]
- Bagnato, G.; Figoli, A.; Garbe, R.; Russo, F.; Galiano, F.; Sanna, A. Development of Ru-PEEK-WC catalytic membrane using a more sustainable solvent for stable hydrogenation reactions. Fuel Process. Technol. 2021, 216, 106766. [Google Scholar] [CrossRef]
- Chang, H.-H.; Chang, L.-K.; Yang, C.-D.; Lin, D.-J.; Cheng, L.-P. Effect of solvent on the dipole rotation of poly(vinylidene fluoride) during porous membrane formation by precipitation in alcohol baths. Polymer 2017, 115, 164–175. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Z.; Wu, Z. Effects of solvent compositions on physicochemical properties and anti-fouling ability of PVDF microfiltration membranes for wastewater treatment. Desalination 2012, 297, 79–86. [Google Scholar] [CrossRef]
- Jung, J.T.; Wang, H.H.; Kim, J.F.; Lee, J.; Kim, J.S.; Drioli, E.; Lee, Y.M. Tailoring nonsolvent-thermally induced phase separation (N-TIPS) effect using triple spinneret to fabricate high performance PVDF hollow fiber membranes. J. Memb. Sci. 2018, 559, 117–126. [Google Scholar] [CrossRef]
- Jung, J.T.; Kim, J.F.; Wang, H.H.; di Nicolo, E.; Drioli, E.; Lee, Y.M. Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS). J. Memb. Sci. 2016, 514, 250–263. [Google Scholar] [CrossRef]
- Su, Y.; Chen, C.; Li, Y.; Li, J. PVDF Membrane Formation via Thermally Induced Phase Separation. J. Macromol. Sci. Part A 2007, 44, 99–104. [Google Scholar] [CrossRef]
- Ghasem, N.; Al-Marzouqi, M.; Abdul Rahim, N. Effect of polymer extrusion temperature on poly(vinylidene fluoride) hollow fiber membranes: Properties and performance used as gas–liquid membrane contactor for CO2 absorption. Sep. Purif. Technol. 2012, 99, 91–103. [Google Scholar] [CrossRef]
- Wu, P.; Jiang, L.Y.; Hu, B. Fabrication of novel PVDF/P(VDF-co-HFP) blend hollow fiber membranes for DCMD. J. Memb. Sci. 2018, 566, 442–454. [Google Scholar] [CrossRef]
- Santoro, S.; Vidorreta, I.M.M.; Sebastian, V.; Moro, A.; Coelhoso, I.M.M.; Portugal, C.A.M.; Lima, J.C.C.; Desiderio, G.; Lombardo, G.; Drioli, E.; et al. A non-invasive optical method for mapping temperature polarization in direct contact membrane distillation. J. Memb. Sci. 2017, 536, 156–166. [Google Scholar] [CrossRef] [Green Version]
- Bottino, A.; Capannelli, G.; Munari, S.; Turturro, A. Solubility parameters of poly(vinylidene fluoride). J. Polym. Sci. Part B Polym. Phys. 1988, 26, 785–794. [Google Scholar] [CrossRef]
- Sherwood, J.; Parker, H.L.; Moonen, K.; Farmer, T.J.; Hunt, A.J. N-Butylpyrrolidinone as a dipolar aprotic solvent for organic synthesis. Green Chem. 2016, 18, 3990–3996. [Google Scholar] [CrossRef] [Green Version]
- Poletto, P.; Duarte, J.; Thürmer, M.B.; Santos, V.D.; Zeni, M. Characterization of polyamide 66 membranes prepared by phase inversion using formic acid and hydrochloric acid such as solvents. Mater. Res. 2011, 14, 547–551. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, C.; Li, X.; Liu, G.; Lv, J. Effects of PVDF Crystallization on Polymer Gelation Behavior and Membrane Structure from PVDF/TEP System via Modified TIPS Process. Polym. Plast. Technol. Eng. 2013, 52, 564–570. [Google Scholar] [CrossRef]
- Chuang, W.Y.; Young, T.H.; Chiu, W.Y.; Lin, C.Y. The effect of polymeric additives on the structure and permeability of poly(vinyl alcohol) asymmetric membranes. Polymer 2000, 41, 5633–5641. [Google Scholar] [CrossRef]
- Ali, M.I.; Summers, E.K.; Arafat, H.A.; Lienhard, V.J.H. Effects of membrane properties on water production cost in small scale membrane distillation systems. Desalination 2012, 306, 60–71. [Google Scholar] [CrossRef]
- Díez, B.; Rosal, R. A critical review of membrane modification techniques for fouling and biofouling control in pressure-driven membrane processes. Nanotechnol. Environ. Eng. 2020, 5, 15. [Google Scholar] [CrossRef]
- Zhao, J.; Chong, J.Y.; Shi, L.; Wang, R. Explorations of combined nonsolvent and thermally induced phase separation (N-TIPS) method for fabricating novel PVDF hollow fiber membranes using mixed diluents. J. Memb. Sci. 2019, 572, 210–222. [Google Scholar] [CrossRef]
- Gebru, K.A.; Das, C. Effects of solubility parameter differences among PEG, PVP and CA on the preparation of ultrafiltration membranes: Impacts of solvents and additives on morphology, permeability and fouling performances. Chin. J. Chem. Eng. 2017, 25, 911–923. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Y.; Chen, B.Z.; Lu, T.D.; Wu, H.L.; Fan, Y.Q.; Xing, W.; Sun, S.P. Designing High-Performance Nanofiltration Membranes for High-Salinity Separation of Sulfate and Chloride in the Chlor-Alkali Process. Ind. Eng. Chem. Res. 2019, 58, 12280–12290. [Google Scholar] [CrossRef]
- Yeow, M.L.; Liu, Y.T.; Li, K. Morphological study of poly(vinylidene fluoride) asymmetric membranes: Effects of the solvent, additive, and dope temperature. J. Appl. Polym. Sci. 2004, 92, 1782–1789. [Google Scholar] [CrossRef]
- Wang, X.L.; Yang, J.; Lin, Y.K.; Tian, Y.; Tang, Y.H. Green preparation of polyvinylidene fluoride microfiltration membranes via thermally indueced phase separation method using diphenyl carbonate and diphenyl ketone as diluents. In Proceedings of the AIChE Annual Meeting, New York, NY, USA, 16–21 October 2011. [Google Scholar]
- Zhang, P.Y.; Yang, H.; Xu, Z.L.; Wei, Y.M.; Guo, J.L.; Chen, D.G. Characterization and preparation of poly(vinylidene fluoride) (PVDF) microporous membranes with interconnected bicontinuous structures via non-solvent induced phase separation (NIPS). J. Polym. Res. 2013, 20, 66. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546. [Google Scholar] [CrossRef]
- Strathmann, H.; Giorno, L.; Drioli, E. Basic Aspects in Polymeric Membrane Preparation. In Comprehensive Membrane Science and Engineering; Elsevier: Amsterdam, The Netherlands, 2010; pp. 91–112. ISBN 9780080932507. [Google Scholar]
- Cui, Z.; Drioli, E.; Lee, Y.M. Recent progress in fluoropolymers for membranes. Prog. Polym. Sci. 2014, 39, 164–198. [Google Scholar] [CrossRef]
- Haponska, M.; Trojanowska, A.; Nogalska, A.; Jastrzab, R.; Gumi, T.; Tylkowski, B. PVDF Membrane Morphology—Influence of Polymer Molecular Weight and Preparation Temperature. Polymers 2017, 9, 718. [Google Scholar] [CrossRef] [Green Version]
- Lopes, A.C.; Costa, C.M.; Tavares, C.J.; Neves, I.C.; Lanceros-Mendez, S. Nucleation of the Electroactive γ Phase and Enhancement of the Optical Transparency in Low Filler Content Poly(vinylidene)/Clay Nanocomposites. J. Phys. Chem. C 2011, 115, 18076–18082. [Google Scholar] [CrossRef]
- Cui, Z.; Hassankiadeh, N.T.; Zhuang, Y.; Drioli, E.; Lee, Y.M. Crystalline polymorphism in poly(vinylidenefluoride) membranes. Prog. Polym. Sci. 2015, 51, 94–126. [Google Scholar] [CrossRef]
- Gaur, A.; Rana, D.; Maiti, P. Mechanical and wear behaviour of poly(vinylidene fluoride)/clay nanocomposite. J. Mater. Res. Technol. 2019, 8, 5874–5881. [Google Scholar] [CrossRef]
- Thangavel, E.; Ramasundaram, S.; Pitchaimuthu, S.; Hong, S.W.; Lee, S.Y.; Yoo, S.-S.; Kim, D.-E.; Ito, E.; Kang, Y.S. Structural and tribological characteristics of poly(vinylidene fluoride)/functionalized graphene oxide nanocomposite thin films. Compos. Sci. Technol. 2014, 90, 187–192. [Google Scholar] [CrossRef]
- Marino, T.; Galiano, F.; Simone, S.; Figoli, A. DMSO EVOLTM as novel non-toxic solvent for polyethersulfone membrane preparation. Environ. Sci. Pollut. Res. 2019, 26, 14774–14785. [Google Scholar] [CrossRef] [PubMed]
- Ngang, H.P.; Ooi, B.S.; Ahmad, A.L.; Lai, S.O. Preparation of PVDF–TiO2 mixed-matrix membrane and its evaluation on dye adsorption and UV-cleaning properties. Chem. Eng. J. 2012, 197, 359–367. [Google Scholar] [CrossRef]
- Dzinun, H.; Ichikawa, Y.; Honda, M.; Zhang, Q. Efficient immobilised TiO2 in polyvinylidene fluoride (PVDF) membrane for photocatalytic degradation of methylene blue. J. Membr. Sci. Res. 2020, 6, 2–3. [Google Scholar]
- Buonomenna, M.G.; Lopez, L.C.; Favia, P.; D’Agostino, R.; Gordano, A.; Drioli, E. New PVDF membranes: The effect of plasma surface modification on retention in nanofiltration of aqueous solution containing organic compounds. Water Res. 2007, 41, 4309–4316. [Google Scholar] [CrossRef]
- Van Tran, T.T.; Kumar, S.R.; Lue, S.J. Separation mechanisms of binary dye mixtures using a PVDF ultrafiltration membrane: Donnan effect and intermolecular interaction. J. Memb. Sci. 2019, 575, 38–49. [Google Scholar] [CrossRef]
- Zhang, D.; Dai, F.; Zhang, P.; An, Z.; Zhao, Y.; Chen, L. The photodegradation of methylene blue in water with PVDF/GO/ZnO composite membrane. Mater. Sci. Eng. C 2019, 96, 684–692. [Google Scholar] [CrossRef] [PubMed]
Aprotic Dipolar Solvent | Polymer PVDF Type | Membrane Preparation Technique | Casting Conditions | Membrane Configurations | (Potential) Applications | Ref. | |||
---|---|---|---|---|---|---|---|---|---|
Solutions Temp. | Casting Temp. | Casting Humidity | Coagulation Bath | ||||||
(°C) | (°C) | (%RH) | |||||||
Greener solvents | |||||||||
Tamisolve® NxG | PVDFSolef®6010 | NIPS | 80–120 | 80–120 | - | water | Flat sheet | UF/MF | In this work |
PVDFCopolymer Solef®21510 | VIPS/NIPS | 25 | 25 | 55 | water | Flat sheet | membrane distillation (MD), Crystallization | [56,59] | |
PVDF (MW: 543 000 Da) | NIPS | 60 | 60 | - | water | Flat sheet | supported PVDF NF-membranes for crosslinked PVDF | [60] | |
PVDF (MW: 543 000 Da) | Spray-NIPS | 100 | 100 | - | water | Flat sheet | NF | [61] | |
Dimethyl sulfoxide (DMSO) | PVDF (Kynar740) | NIPS | 80 | 80 | - | water | Flat sheet | desalination by MD | [63] |
PVDFSolef®6012 | Electrospinning | 70 | 25 | - | - | Nanofibers | water treatment | [54] | |
PVDF (from Shanghai 3F) | NIPS | 80 | 80 | - | water | Flat sheet | MF | [64] | |
Triethylphosphate (TEP) | PVDFSolef®6010 | VIPS/NIPS | 100 | 100 | - | water | Flat sheet | MF | [40] |
PVDF (Kynar740) | NIPS | 80 | 80 | - | water | Flat sheet | desalination by MD | [63] | |
PVDFCopolymer Solef®21510 | NIPS | 25 | 25 | - | water, water-ipa | Flat sheet | aqueous MD | [42] | |
PVDF (from Shanghai 3F) | NIPS | 80 | 80 | - | water | Flat sheet | MF | [64] | |
Dimethyl isosorbide (DMI) | PVDFSolef®6010 | VIPS/NIPS | 120 | 25 | 65 | water | Flat sheet | UF/MF | [39] |
PVDFSolef®6012 | VIPS/NIPS | 120 | 25 | 65 | water | Flat sheet | UF/MF | ||
Polarclean® | PVDFSolef®1015 | N-TIPS | 130 | - | - | water | Hollow fiber | water treatment | [65] |
PVDFSolef®1015 | NIPS-TIPS | 200 | - | - | water | Flat sheet | water treatment | [66] | |
Cyrene® | PVDFSolef®6010 | VIPS/NIPS | 70 | 25 | 55 | water | Flat sheet | UF/MF | [37] |
Propylene carbonate | PVDF (MW: 170 000 Da) | TIPS 1 | - | - | - | water | Hollow fiber | water treatment | [67] |
Triacetin | PVDF | TIPS | 170 | 170 | - | water | Hollow fiber | membrane condenser | [68] |
Ɣ-Butyrolactone | PVDF (MW: 170 000 Da) | TIPS | - | - | - | water | Hollow fiber | water treatment | [67] |
Conventional and toxic solvents | |||||||||
NMP | PVDFSolef®1015 | N-TIPS | 130 | - | - | water | Hollow fiber | water treatment | [65] |
PVDF6010/P(VDF-co-HFP) | NIPS | 60 | 60 | - | Water/ethanol | Hollow fiber | DCMD | [69] | |
DMF | PVDF (from Shanghai 3F) | NIPS | 80 | 80 | 80 | water | Flat sheet | MF | [64] |
PVDFSolef®6012 | Electrospinning | 70 | 25 | - | - | Nanofibers | MD | [70] | |
DMA | PVDF (from Shanghai 3F) | NIPS | 80 | 80 | - | water | Flat sheet | MF | [64] |
Dibutyl phthalate (DBP) | PVDFSolef®1015 | N-TIPS | 130 | 130 | - | water | Hollow fiber | water treatment | [65] |
Membrane Code | Casting Solution Composition | Temperature of Casting Solutions | Coagulation Conditions | ||||
---|---|---|---|---|---|---|---|
PVDF 6010 | PVP K17 | PEG 200 | TAM® | Temperature of Coagulation Bath | Time | ||
(wt%) | (wt%) | (wt%) | (wt%) | (°C) | (°C) | (minutes) | |
MN1 | 15 | 0 | 0 | 85 | 80 | 15 | ~8 |
MN2 | 15 | 5 | 0 | 85 | 80 | 15 | ~5 |
MN3 | 15 | 0 | 20 | 65 | 80 | 15 | ~5 |
MN4 | 15 | 0 | 40 | 65 | 120 | 15 | ~5 |
MN5 | 15 | 5 | 10 | 70 | 80 | 15 | ~5 |
MN6 | 15 | 5 | 15 | 65 | 80 | 15 | ~5 |
MN7 | 15 | 5 | 20 | 60 | 80 | 15 | ~5 |
MN8 | 15 | 5 | 40 | 40 | 120 | 15 | ~8 |
MN9 | 18 | 0 | 20 | 62 | 120 | 15 | ~8 |
MN10 | 18 | 5 | 20 | 57 | 120 | 15 | ~8 |
MN11 | 10 | 0 | 20 | 70 | 80 | 15 | ~5 |
MN12 | 10 | 5 | 20 | 65 | 80 | 15 | ~5 |
Membranes | Compositions | Viscosity |
---|---|---|
(cP) | ||
MN1 | 15 wt%PVDF-Tamisolve® NxG | 375.5 ± 1 |
MN2 | 15 wt%PVDF-5 wt% PVP K17-Tamisolve® NxG | 815.2 ± 1 |
MN3 | 15 wt%PVDF-20 wt% PEG200-Tamisolve® NxG | 787.3 ± 1 |
MN5 | 15 wt%PVDF-5 wt% PVP K17–10 wt%-PEG200- Tamisolve® NxG | 951 ± 1 |
MN7 | 15 wt%PVDF-5 wt% PVP K17–20 wt%-PEG200- Tamisolve® NxG | 1546 ± 1 |
MN9 | 18 wt%PVDF-20 wt% PEG200-Tamisolve® NxG | 921 ± 1 |
MN11 | 10 wt%PVDF-20 wt% PEG200-Tamisolve® NxG | 675 ± 1 |
CODE | Thickness | Porosity | Contact Angle Air Side | Contact Angle Glass Side |
---|---|---|---|---|
(µm) | (%) | (°) | (°) | |
MN1 | 100 ± 1 | 83 ± 2 | 91 ± 1 | 117 ± 1 |
MN2 | 125 ± 1 | 87 ± 2 | 77 ± 1 | 90 ± 1 |
MN3 | 104 ± 1 | 87 ± 1 | 76 ± 1 | 95 ± 1 |
MN4 | 107 ± 1 | 86 ± 1 | 88 ± 1 | 110 ± 1 |
MN5 | 123 ± 1 | 89 ± 2 | 86 ± 0 | 94 ± 1 |
MN6 | 122 ± 1 | 86 ± 1 | 76 ± 1 | 80 ± 1 |
MN7 | 109 ± 2 | 89 ± 1 | 75 ± 0 | 78 ± 1 |
MN8 | 110 ± 1 | 84 ± 2 | 85 ± 0 | 90 ± 1 |
MN9 | 133 ± 1 | 71 ± 1 | 84 ± 0 | 110 ± 0 |
MN10 | 138 ± 1 | 78 ± 1 | 82 ± 0 | 110 ± 0 |
MN11 | 90 ± 2 | 87 ± 1 | 86 ± 1 | 101 ± 1 |
MN12 | 96 ± 1 | 87 ± 1 | 79 ± 1 | 87 ± 1 |
Polymer | Solvent | Solvent Toxicity 1 | Additives | Foulant | PWP 2 | Rejection | PRR | Ref. |
---|---|---|---|---|---|---|---|---|
PVDF (15 wt %) | Tamisolve® NxG | P | PEG (20 wt%) | MB | 257 L/m2hbar | 57% | 81% | In this work |
PVDF (15 wt %) | PVP (5 wt%) PEG (20 wt%) | MB | 269 L/m2hbar | 86% | 94% | In this work | ||
PVDF (10 wt %) | PVP (5 wt%) PEG (20 wt%) | MB | 88 L/m2hbar | 79% | 86% | In this work | ||
PVDF (13 wt %) | TEP | P | PVP (3 wt%) PEG (24 wt%) | MB | 2900 L/m2hbar | 53% | - | [44] |
PVDF/PMMA (12 wt %) | TEP | P | PVP (5 wt%) PEG (25 wt%) | MB | 140 L/m2hbar | 51% | - | [43] |
PVDF (15 wt %) | DMAc | H | - | MB | - | 40% | - | [94] |
PVDF (18 wt %) | DMAc | H | - | MB | 77 L/m2hbar | 79% | 94% | [93] |
PVDF (15 wt %) | DMF | H | - | MB | 5 L/m2hbar | 40% | 59% | [95] |
PVDF (15 wt %) | DMF | H | PVP (1 wt%) | MB | - | 45% | - | [97] |
PVDF (20 wt %) | NMP | H | - | MB | 1313 L/m2hbar | 50% | - | [96] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russo, F.; Marino, T.; Galiano, F.; Gzara, L.; Gordano, A.; Organji, H.; Figoli, A. Tamisolve® NxG as an Alternative Non-Toxic Solvent for the Preparation of Porous Poly (Vinylidene Fluoride) Membranes. Polymers 2021, 13, 2579. https://doi.org/10.3390/polym13152579
Russo F, Marino T, Galiano F, Gzara L, Gordano A, Organji H, Figoli A. Tamisolve® NxG as an Alternative Non-Toxic Solvent for the Preparation of Porous Poly (Vinylidene Fluoride) Membranes. Polymers. 2021; 13(15):2579. https://doi.org/10.3390/polym13152579
Chicago/Turabian StyleRusso, Francesca, Tiziana Marino, Francesco Galiano, Lassaad Gzara, Amalia Gordano, Hussam Organji, and Alberto Figoli. 2021. "Tamisolve® NxG as an Alternative Non-Toxic Solvent for the Preparation of Porous Poly (Vinylidene Fluoride) Membranes" Polymers 13, no. 15: 2579. https://doi.org/10.3390/polym13152579