Water-Repellent Characteristics of Beech Wood Coated with Parylene-N
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coating Process
2.2. Sample Analysis
2.2.1. Coating Thickness and Morphology
2.2.2. X-ray Photoelectron Spectroscopy
2.2.3. Fourier-Transform Infrared Spectroscopy
2.2.4. Water Contact Angle
2.2.5. Water Uptake and Release Test of the Samples
2.2.6. Statistical Analysis
3. Results and Discussion
3.1. Coating Thickness and Morphology
3.2. X-ray Photoelectron Spectroscopy (XPS)
3.3. Fourier-Transform Infrared Spectroscopy (FTIR)
3.4. Water Contact Angle
3.5. Water Uptake and Release of the Samples
4. Conclusions
- The deposition of parylene on wood was possible, whereby, depending on the treatment parameters, layer thicknesses of 0.5–32.8 µm were produced.
- All layers had the same chemical structure and consisted of an aromatic ring with attached methylene groups inside the monomeric unit. The XPS measurements revealed minor oxygen contamination on the coating surfaces, which can be attributed to the coating process.
- A true-to-shape coating could be produced with a layer thickness between 0.5 and 4.1 µm. With increasing parylene content, the filling of the vessels was observed.
- The applied coatings showed an increase in the water contact angle compared to the uncoated reference, leading to a water-repellent characteristic of the coated surface.
- For all layers, a reduction of water absorption was found, and a linear relationship between layer thickness and water absorption was detected. The water absorption decreased with increasing layer thickness.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pandey, K.K. A note on the influence of extractives on the photo-discoloration and photo-degradation of wood. Polym. Degrad. Stab. 2005, 87, 375–379. [Google Scholar] [CrossRef]
- Chiniforush, A.A.; Akbarnezhad, A.; Valipour, H.; Malekmohammadi, S. Moisture and temperature induced swelling/shrinkage of softwood and hardwood glulam and LVL: An experimental study. Constr. Build. Mater. 2019, 207, 70–83. [Google Scholar] [CrossRef]
- Teacă, C.A.; Roşu, D.; Bodîrlău, R.; Roşu, L. Structural Changes in Wood under Artificial UV Light Irradiation Determined by FTIR Spectroscopy and Color Measurements—A Brief Review. BioResources 2012, 8, 1478–1507. [Google Scholar] [CrossRef]
- Broda, M. Natural Compounds for Wood Protection against Fungi—A Review. Molecules 2020, 25, 3538. [Google Scholar] [CrossRef] [PubMed]
- Tomak, E.D.; Ustaomer, D.; Yildiz, S.; Pesman, E. Changes in surface and mechanical properties of heat treated wood during natural weathering. Measurement 2014, 53, 30–39. [Google Scholar] [CrossRef]
- Kong, L.; Tu, K.; Guan, H.; Wang, X. Growth of high-density ZnO nanorods on wood with enhanced photostability, flame retardancy and water repellency. Appl. Surf. Sci. 2017, 407, 479–484. [Google Scholar] [CrossRef]
- Chang, C.-W.; Lu, K.-T. Epoxy acrylate UV/PU dual-cured wood coatings. J. Appl. Polym. Sci. 2010, 115, 2197–2202. [Google Scholar] [CrossRef]
- Akhtar, M.; van den Driesche, S.; Bödecker, A.; Vellekoop, M.J. Long-term storage of droplets on a chip by Parylene AF4 coating of channels. Sens. Actuators B Chem. 2018, 255, 3576–3584. [Google Scholar] [CrossRef]
- Ortigoza-Diaz, J.; Scholten, K.; Larson, C.; Cobo, A.; Hudson, T.; Yoo, J.; Baldwin, A.; Weltman Hirschberg, A.; Meng, E. Techniques and Considerations in the Microfabrication of Parylene C Microelectromechanical Systems. Micromachines 2018, 9, 422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, B.J.; Meng, E. Micromachining of Parylene C for bioMEMS. Polym. Adv. Technol. 2016, 27, 564–576. [Google Scholar] [CrossRef]
- Golda-Cepa, M.; Engvall, K.; Hakkarainen, M.; Kotarba, A. Recent progress on parylene C polymer for biomedical applications: A review. Prog. Org. Coat. 2020, 140, 105493. [Google Scholar] [CrossRef]
- Goldberg, E.D. Halogenated hydrocarbons: Past, present and near-future problems. Sci. Total. Environ. 1991, 100, 17–28. [Google Scholar] [CrossRef]
- Köhler, R.; Sauerbier, P.; Militz, H.; Viöl, W. Atmospheric Pressure Plasma Coating of Wood and MDF with Polyester Powder. Coatings 2017, 7, 171. [Google Scholar] [CrossRef] [Green Version]
- Meyer-Veltrup, L.; Brischke, C.; Alfredsen, G.; Humar, M.; Flæte, P.-O.; Isaksson, T.; Brelid, P.L.; Westin, M.; Jermer, J. The combined effect of wetting ability and durability on outdoor performance of wood: Development and verification of a new prediction approach. Wood Sci. Technol. 2017, 51, 615–637. [Google Scholar] [CrossRef]
- Nguila Inari, G.; Pétrissans, M.; Dumarcay, S.; Lambert, J.; Ehrhardt, J.J.; Šernek, M.; Gérardin, P. Limitation of XPS for analysis of wood species containing high amounts of lipophilic extractives. Wood Sci. Technol. 2011, 45, 369–382. [Google Scholar] [CrossRef]
- Pruden, K.G.; Sinclair, K.; Beaudoin, S. Characterization of parylene-N and parylene-C photooxidation. J. Polym. Sci. A Polym. Chem. 2003, 41, 1486–1496. [Google Scholar] [CrossRef]
- Shutov, D.A.; Kang, S.-Y.; Baek, K.-H.; Suh, K.S.; Kwon, K.-H. Influence of Ar and NH 3 Plasma Treatment on Surface of Poly(monochloro- para -xylylene) Dielectric Films Processed in Oxygen Plasma. Jpn. J. Appl. Phys. 2008, 47, 6970–6973. [Google Scholar] [CrossRef]
- Kahouli, A.; Sylvestre, A.; Laithier, J.-F.; Lutsen, L.; Pairis, S.; André, E.; Garden, J.-L. Structural and dielectric properties of parylene-VT4 thin films. Mater. Chem. Phys. 2014, 143, 908–914. [Google Scholar] [CrossRef]
- Renner, G.; Schmidt, T.C.; Schram, J. Characterization and Quantification of Microplastics by Infrared Spectroscopy. In Characterization and Analysis of Microplastics; Elsevier: Amsterdam, The Netherlands, 2017; pp. 67–118. ISBN 9780444638984. [Google Scholar]
- Sedlmeier, F.; Janecek, J.; Sendner, C.; Bocquet, L.; Netz, R.R.; Horinek, D. Water at polar and nonpolar solid walls. Biointerphases 2008, 3, FC23–FC39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broer, D.J.; Luijks, W. Penetration of p-xylylene vapor into small channels prior to polymerization. J. Appl. Polym. Sci. 1981, 26, 2415–2422. [Google Scholar] [CrossRef]
Sample | C-C, C=C | C-O | C=O | O-C=O | Oxygen Contamination | N1s | Na1s | O1s |
---|---|---|---|---|---|---|---|---|
Beech wood | 27.17 ± 2.31 | 31.41 ± 1.03 | 9.01 ± 0.54 | 2.63 ± 0.31 | – | 0.34 ± 0.13 | – | 29.43 ± 1.47 |
C1 | 94.08 ± 1.65 | – | – | – | 4.04 ± 1.41 | – | – | 1.89 ± 0.27 |
C2 | 95.30 ± 0.61 | – | – | – | 3.15 ± 0.71 | – | – | 1.55 ± 0.17 |
C3 | 96.18 ± 0.70 | – | – | – | 2.52 ± 0.70 | – | – | 1.30 ± 0.32 |
C4 | 96.08 ± 0.32 | – | – | – | 2.23 ± 0.32 | – | 0.28 ± 0.18 | 1.41 ± 0.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Köhler, R.; Sauerbier, P.; Weber, M.; Wander, R.-C.; Wieneke, S.; Viöl, W. Water-Repellent Characteristics of Beech Wood Coated with Parylene-N. Polymers 2021, 13, 2076. https://doi.org/10.3390/polym13132076
Köhler R, Sauerbier P, Weber M, Wander R-C, Wieneke S, Viöl W. Water-Repellent Characteristics of Beech Wood Coated with Parylene-N. Polymers. 2021; 13(13):2076. https://doi.org/10.3390/polym13132076
Chicago/Turabian StyleKöhler, Robert, Philipp Sauerbier, Mirco Weber, Roland-Christian Wander, Stephan Wieneke, and Wolfgang Viöl. 2021. "Water-Repellent Characteristics of Beech Wood Coated with Parylene-N" Polymers 13, no. 13: 2076. https://doi.org/10.3390/polym13132076
APA StyleKöhler, R., Sauerbier, P., Weber, M., Wander, R.-C., Wieneke, S., & Viöl, W. (2021). Water-Repellent Characteristics of Beech Wood Coated with Parylene-N. Polymers, 13(13), 2076. https://doi.org/10.3390/polym13132076