Hemicellulose-Based Film: Potential Green Films for Food Packaging
Abstract
:1. Introduction
2. Hemicellulose Film Matrix
3. Modification of Hemicellulose
3.1. Physical Modification
3.1.1. Plasticizer
3.1.2. Reinforcing Agent
3.2. Chemical Modification
3.2.1. Esterification
3.2.2. Etherification
3.2.3. Grafting Modification
3.2.4. Cross-Linking
4. Application in Food Packaging
5. Outlook
Funding
Acknowledgments
Conflicts of Interest
References
- Technavio Website. Available online: https://www.technavio.com/report/global-food-packaging-market-analysis-share-2018 (accessed on April 18, 2020).
- Arrieta, M.P.; Peponi, L.; López, D.; López, J.; Kenny, J.M. An overview of nanoparticles role in the improvement of barrier properties of bioplastics for food packaging applications. Food Packag. 2017, 391–424. [Google Scholar] [CrossRef]
- European Bioplastics Market Data Website. Available online: http://docs.european-bioplastics.org/publications/market_data/2017/ReportBioplasticsMarketData2017.pdf (accessed on April 18, 2020).
- Tang, X.Z.; Kumar, P.; Alavi, S.; Sandeep, K. Recent Advances in Biopolymers and Biopolymer-Based Nanocomposites for Food Packaging Materials. Crit. Rev. Food Sci. Nutr. 2012, 52, 426–442. [Google Scholar] [CrossRef]
- Mohamed, S.A.A.; El-Sakhawy, M.; El-Sakhawy, M.A.M. Polysaccharides, Protein and lipid-based natural edible films in food packaging: A review. Carbohydr. Polym. 2020, 238, 116–178. [Google Scholar] [CrossRef]
- Perez, J.; Muñoz-Dorado, J.; De La Rubia, T.; Martinez, J. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. Int. Microbiol. 2002, 5, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Liu, X.; Chang, C.; Wang, Y. Recent developments and prospective food-related applications of cellulose nanocrystals: A review. Cellulose 2020, 27, 2991–3011. [Google Scholar] [CrossRef]
- Huang, S.; Tao, R.; Ismail, A.; Wang, Y. Cellulose Nanocrystals Derived from Textile Waste through Acid Hydrolysis and Oxidation as Reinforcing Agent of Soy Protein Film. Polymers 2020, 12, 958. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Scheller, H.V.; Ulvskov, P. Hemicelluloses. Annu. Rev. Plant. Biol. 2010, 61, 263–289. [Google Scholar] [CrossRef] [PubMed]
- Hansen, N.M.L.; Plackett, D. Sustainable Films and Coatings from Hemicelluloses: A Review. Biomacromolecules 2008, 9, 1493–1505. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Bolaños, J. Steam-explosion of olive stones: Hemicellulose solubilization and enhancement of enzymatic hydrolysis of cellulose. Bioresour. Technol. 2001, 79, 53–61. [Google Scholar] [CrossRef]
- Azhar, S.; Henriksson, G.; Theliander, H.; Lindström, M. Extraction of hemicelluloses from fiberized spruce wood. Carbohydr. Polym. 2015, 117, 19–24. [Google Scholar] [CrossRef]
- Minjares-Fuentes, R.; Femenia, A.; Garau, M.; Candelas-Cadillo, M.; Simal, S.; Rosselló, C.; Minjares-Fuentes, J.R. Ultrasound-assisted extraction of hemicelluloses from grape pomace using response surface methodology. Carbohydr. Polym. 2016, 138, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Zeitoun, R.; Pontalier, P.-Y.; Maréchal, P.; Rigal, L. Twin-screw extrusion for hemicellulose recovery: Influence on extract purity and purification performance. Bioresour. Technol. 2010, 101, 9348–9354. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.-G.; Jia, N.; Zhu, J.; Li, S.-M.; Peng, F.; Sun, R.-C. Isolation and characterization of hemicelluloses extracted by hydrothermal pretreatment. Bioresour. Technol. 2012, 114, 677–683. [Google Scholar] [CrossRef] [PubMed]
- Guerra-Rodríguez, E.; Portilla-Rivera, O.M.; Jarquín-Enríquez, L.; Ramirez, J.; Vázquez, M. Acid hydrolysis of wheat straw: A kinetic study. Biomass Bioenergy 2012, 36, 346–355. [Google Scholar] [CrossRef]
- Saake, B.; Kruse, T.; Puls, J. Investigation on molar mass, solubility and enzymatic fragmentation of xylans by multi-detected SEC chromatography. Bioresour. Technol. 2001, 80, 195–204. [Google Scholar] [CrossRef]
- Jin, X.; Hu, Z.; Wu, S.; Song, T.; Yue, F.; Xiang, Z. Promoting the material properties of xylan-type hemicelluloses from the extraction step. Carbohydr. Polym. 2019, 215, 235–245. [Google Scholar] [CrossRef]
- Sun, R.C.; Sun, X.F.; Tomkinson, J. Hemicellulose: Science and Technology; American Chemical Society: Washington, DC, USA, 2003. [Google Scholar]
- Yu, Q.X.; Wang, H.S.; Chu, F.Q.; Liu, Y.F.; Yu, G. Preparation and properties of novel hemicellulose membrane materials. Pap. Sci. Technol. 2014, 33, 30–34. [Google Scholar]
- Bahcegul, E.; Toraman, H.E.; Ozkan, N.; Bakir, U. Evaluation of alkaline pretreatment temperature on a multi-product basis for the co-production of glucose and hemicellulose based films from lignocellulosic biomass. Bioresour. Technol. 2012, 103, 440–445. [Google Scholar] [CrossRef]
- Liang, Y.Z. Preparation and Properties of Hemicellulose /Chitosan Composite Membrane. Master’s Thesis, Qilu University of Technology, Jinan, China, 2015. [Google Scholar]
- Shao, H.; Sun, H.; Yang, B.; Zhang, H.J. Latest Research Progress in Hemicellulose Films. China Plastics 2019, 33, 126–136. [Google Scholar]
- Li, Z.; Pan, X. Strategies to modify physicochemical properties of hemicelluloses from biorefinery and paper industry for packaging material. Rev. Environ. Sci. Bio/Technol. 2018, 17, 47–69. [Google Scholar] [CrossRef]
- Nesic, A.; Cabrera, G.; Dimitrijevic-Brankovic, S.; Davidovic, S.; Radovanović, N.; Delattre, C. Prospect of Polysaccharide-Based Materials as Advanced Food Packaging. Molecules 2019, 25, 135. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sabiha-Hanim, S.; Siti-Norsafurah, A. Physical Properties of Hemicellulose Films from Sugarcane Bagasse. Procedia Eng. 2012, 42, 1390–1395. [Google Scholar] [CrossRef][Green Version]
- Goksu, E.I.; Karamanlioglu, M.; Bakir, U.; Yilmaz, L.; Yilmazer, U. Production and Characterization of Films from Cotton Stalk Xylan. J. Agric. Food Chem. 2007, 55, 10685–10691. [Google Scholar] [CrossRef] [PubMed]
- Ariffin, F.; Mohd, N.A.; Haliza, A.H. Development of hemicelluloses biodegradable films from oil palm frond (elais guineensis). In Proceedings of the International Conference on Green and Sustainable Innovation (ICGSI 2006), Chiang Mai, Thailand, 29 November–1 December 2006; pp. 260–265. [Google Scholar]
- Höije, A.; Gröndahl, M.; Tømmeraas, K.; Gatenholm, P. Isolation and characterization of physico -chemical and material properties of arabinoxylans from barley husks. Carbohydr. Polym. 2005, 61, 266–275. [Google Scholar] [CrossRef]
- Escalante, A.; Gonçalves, A.; Bodin, A.; Stepan, A.; Sandström, C.; Toríz, G.; Gatenholm, P. Flexible oxygen barrier films from spruce xylan. Carbohydr. Polym. 2012, 87, 2381–2387. [Google Scholar] [CrossRef]
- Svärd, A.; Brännvall, E.; Edlund, U.M. Rapeseed straw as a renewable source of hemicelluloses: Extraction, characterization and film formation. Carbohydr. Polym. 2015, 133, 179–186. [Google Scholar] [CrossRef]
- Mikkonen, K.S.; Heikkilä, M.I.; Willför, S.M.; Tenkanen, M.; Mikkonen, K.S.; Heikkilä, M.I.; Willför, S.M.; Tenkanen, M. Films from glyoxal-crosslinked spruce galactoglucomannans plasticized with sorbitol. Int. J. Polym. Sci. 2012, 2012, 1–8. [Google Scholar] [CrossRef][Green Version]
- Xu, J.Y.; Xia, R.R.; Zheng, L.; Yuan, T.Q.; Sun, R.C. Plasticized hemicelluloses /chitosan-based edible films reinforced by cellulose nanofiber with enhanced mechanical properties. Carbohydr. Polym. 2019, 224, 115164. [Google Scholar] [CrossRef]
- Hartman, J.; Albertsson, A.-C.; Lindblad, M.S.; Sjöberg, J. Oxygen barrier materials from renewable sources: Material properties of softwood hemicellulose-based films. J. Appl. Polym. Sci. 2006, 100, 2985–2991. [Google Scholar] [CrossRef]
- Guan, Y.; Zhang, B.; Tan, X.; Qi, X.-M.; Bian, J.; Peng, F.; Sun, S.-L. Organic–Inorganic Composite Films Based on Modified Hemicelluloses with Clay Nanoplatelets. ACS Sustain. Chem. Eng. 2014, 2, 1811–1818. [Google Scholar] [CrossRef]
- Chen, G.-G.; Qi, X.-M.; Li, M.-P.; Guan, Y.; Bian, J.; Peng, F.; Yao, C.-L.; Sun, R.-C. Hemicelluloses/montmorillonite hybrid films with improved mechanical and barrier properties. Sci. Rep. 2015, 5, 16405. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.-G.; Qi, X.-M.; Guan, Y.; Peng, F.; Yao, C.-L.; Sun, R.-C. High Strength Hemicellulose-Based Nanocomposite Film for Food Packaging Applications. ACS Sustain. Chem. Eng. 2016, 4, 1985–1993. [Google Scholar] [CrossRef]
- Stepan, A.M.; Ansari, F.; Berglund, L.; Gatenholm, P. Nanofibrillated cellulose reinforced acetylated arabinoxylan films. Compos. Sci. Technol. 2014, 98, 72–78. [Google Scholar] [CrossRef]
- Pereira, P.H.; Waldron, K.W.; Wilson, D.R.; Cunha, A.P.; De Brito, E.S.; Rodrigues, T.H.; Rosa, M.F.; De Azeredo, H.M.C. Wheat straw hemicelluloses added with cellulose nanocrystals and citric acid. Effect on film physical properties. Carbohydr. Polym. 2017, 164, 317–324. [Google Scholar] [CrossRef] [PubMed][Green Version]
- El Miri, N.; Abdelouahdi, K.; Barakat, A.; Zahouily, M.; Fihri, A.; Solhy, A.; El Achaby, M. Bio-nanocomposite films reinforced with cellulose nanocrystals: Rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films. Carbohydr. Polym. 2015, 129, 156–167. [Google Scholar] [CrossRef]
- Huang, B.; Tang, Y.; Pei, Q.; Zhang, K.; Liu, N. Hemicellulose-Based Films Reinforced with Unmodified and Cationically Modified Nanocrystalline Cellulose. J. Polym. Environ. 2017, 26, 1625–1634. [Google Scholar] [CrossRef]
- Yu, Q.X.; Wang, H.S.; Chu, F.Q.; Liu, Y.F.; Yu, G. Preparation and characterization of hemicellulose-based films. Pap. Sci. Technol. 2014, 39, 62–67. [Google Scholar]
- Qi, X.-M.; Liu, S.-Y.; Chu, F.-B.; Pang, S.; Liang, Y.-R.; Guan, Y.; Peng, F.; Sun, R. Preparation and Characterization of Blended Films from Quaternized Hemicelluloses and Carboxymethyl Cellulose. Materials 2015, 9, 4. [Google Scholar] [CrossRef][Green Version]
- Petzold-Welcke, K.; Schwikal, K.; Daus, S.; Heinze, T. Xylan derivatives and their application potential—Mini-review of own results. Carbohydr. Polym. 2014, 100, 80–88. [Google Scholar] [CrossRef]
- Chen, M.-J.; Li, R.-M.; Zhang, X.-Q.; Feng, J.; Liu, C.-F.; Shi, Q.-S.; Feng, J. Homogeneous Transesterification of Sugar Cane Bagasse toward Sustainable Plastics. ACS Sustain. Chem. Eng. 2016, 5, 360–366. [Google Scholar] [CrossRef]
- Peng, X.; Ren, J.-L.; Sun, R.-C. Homogeneous Esterification of Xylan-Rich Hemicelluloses with Maleic Anhydride in Ionic Liquid. Biomacromolecules 2010, 11, 3519–3524. [Google Scholar] [CrossRef]
- Hirose, D.; Kusuma, S.B.W.; Nomura, S.; Yamaguchi, M.; Yasaka, Y.; Kakuchi, R.; Takahashi, K. Effect of anion in carboxylate-based ionic liquids on catalytic activity of transesterification with vinyl esters and the solubility of cellulose. RSC Adv. 2019, 9, 4048–4053. [Google Scholar] [CrossRef][Green Version]
- Zhang, X.; Xiao, N.; Chen, M.; Wei, Y.; Liu, C. Functional packaging films originating from hemicelluloses laurate by direct transesterification in ionic liquid. Carbohydr. Polym. 2019, 229, 115336. [Google Scholar] [CrossRef] [PubMed]
- Gröndahl, M.; Gustafsson, A.; Gatenholm, P. Gas-Phase Surface Fluorination of Arabinoxylan Films. Macromolecules 2006, 39, 2718–2721. [Google Scholar] [CrossRef]
- Peyroux, J.; Dubois, M.; Tomasella, E.; Batisse, N.; Frezet, L.; Petit, E.; Kharitonov, A.P.; Flahaut, D. Plasma and fluorination combination for stable multifunctionality of LDPE packaging films. Plasma Process. Polym. 2016, 14, 1600066. [Google Scholar] [CrossRef]
- Ibn Yaich, A.; Edlund, U.M.; Albertsson, A.-C. Transfer of Biomatrix/Wood Cell Interactions to Hemicellulose-Based Materials to Control Water Interaction. Chem. Rev. 2017, 117, 8177–8207. [Google Scholar] [CrossRef] [PubMed]
- Nypelö, T.; Laine, C.; Aoki, M.; Tammelin, T.; Henniges, U. Etherification of Wood-Based Hemicelluloses for Interfacial Activity. Biomacromolecules 2016, 17, 1894–1901. [Google Scholar] [CrossRef] [PubMed]
- Härdelin, L.; Bernin, D.; Börjesson, M.; Strom, A.; Larsson, A. Altered Thermal and Mechanical Properties of Spruce Galactoglucomannan Films Modified with an Etherification Reaction. Biomacromolecules 2020, 21, 1832–1840. [Google Scholar] [CrossRef]
- Hartman, J.; Albertsson, A.-C.; Sjöberg, J. Surface- and Bulk-Modified Galactoglucomannan Hemicellulose Films and Film Laminates for Versatile Oxygen Barriers. Biomacromolecules 2006, 7, 1983–1989. [Google Scholar] [CrossRef]
- Ren, J.; Xinwen, P.; Linxin, Z.; Feng, P.; Sun, R. Novel hydrophobic hemicelluloses: Synthesis and characteristic. Carbohydr. Polym. 2012, 89, 152–157. [Google Scholar] [CrossRef]
- Du, J.; Li, C.; Zhao, Y.; Wang, H. Hemicellulose isolated from waste liquor of viscose fiber mill for preparation of polyacrylamide-hemicellulose hybrid films. Int. J. Boil. Macromol. 2018, 108, 1255–1260. [Google Scholar] [CrossRef] [PubMed]
- Farhat, W.; Venditti, R.; Ayoub, A.; Prochazka, F.; Fernandez-De-Alba, C.; Mignard, N.; Taha, M.; Becquart, F. Towards thermoplastic hemicellulose: Chemistry and characteristics of poly-(ε-caprolactone) grafting onto hemicellulose backbones. Mater. Des. 2018, 153, 298–307. [Google Scholar] [CrossRef]
- Börjesson, M.; Westman, G. Branching of hemicelluloses through an azetidinium salt ring-opening reaction. Carbohydr. Res. 2016, 428, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Goodman, S.H. Handbook of Thermoset Plastics; William Andrew Publishing: Westwood, MA, USA, 1999. [Google Scholar]
- Karaaslan, M.A.; Tshabalala, M.A.; Buschle-Diller, G. Semi-interpenetrating polymer network hydrogels based on aspen hemicellulose and chitosan: Effect of crosslinking sequence on hydrogel properties. J. Appl. Polym. Sci. 2012, 124, 1168–1177. [Google Scholar] [CrossRef]
- Cao, X.; Peng, X.; Zhong, L.; Sun, R. Multiresponsive Hydrogels Based on Xylan-Type Hemicelluloses and Photoisomerized Azobenzene Copolymer as Drug Delivery Carrier. J. Agric. Food Chem. 2014, 62, 10000–10007. [Google Scholar] [CrossRef]
- Wang, S.; Ren, J.; Li, W.; Sun, R.; Liu, S. Properties of polyvinyl alcohol/xylan composite films with citric acid. Carbohydr. Polym. 2014, 103, 94–99. [Google Scholar] [CrossRef]
- Salam, A.; Venditti, R.A.; Pawlak, J.J.; EI-Tahlawy, K. Crosslinked hemicellulose citrate-chitosan aerogel foams. Carbohydr. Polym. 2011, 84, 1221–1229. [Google Scholar] [CrossRef]
- Azeredo, H.M.; Kontou-Vrettou, C.; Moates, G.K.; Wellner, N.; Cross, K.; Pereira, P.H.; Waldron, K.W. Wheat straw hemicellulose films as affected by citric acid. Food Hydrocoll. 2015, 50, 1–6. [Google Scholar] [CrossRef][Green Version]
- Shao, H.; Sun, H.; Yang, B.; Zhang, H.; Hu, Y. Facile and green preparation of hemicellulose-based film with elevated hydrophobicity via cross-linking with citric acid. RSC Adv. 2019, 9, 2395–2401. [Google Scholar] [CrossRef][Green Version]
- Huang, C.; Fang, G.; Deng, Y.; Bhagia, S.; Meng, X.; Tao, Y.; Yong, Q.; Ragauskas, A.J. Robust galactomannan/graphene oxide film with ultra-flexible, gas barrier and self-clean properties. Compos. Part. A Appl. Sci. Manuf. 2020, 131, 105780. [Google Scholar] [CrossRef]
- Sangroniz, A.; Zhu, J.-B.; Tang, X.; Etxeberria, A.; Chen, E.Y.-X.; Sardón, H. Packaging materials with desired mechanical and barrier properties and full chemical recyclability. Nat. Commun. 2019, 10, 3559. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zhu, Q.L.; Wang, Y.; Liu, F.; Xue, L.X. Preparation and characterization of high performance PVDC barrier membranes. Eng. Plast. Appl. 2012, 40, 18–20. [Google Scholar]
- Peter, Z.; Kenyo, C.; Renner, K.; Krohnke, C.; Pukanszky, B. Decreased oxygen permeability of EVOH through molecular interactions. Express Polym. Lett. 2014, 8, 756–766. [Google Scholar] [CrossRef][Green Version]
- Mokwena, K.K.; Tang, J. Ethylene Vinyl Alcohol: A Review of Barrier Properties for Packaging Shelf Stable Foods. Crit. Rev. Food Sci. Nutr. 2012, 52, 640–650. [Google Scholar] [CrossRef] [PubMed]
- Cejudo-Bastante, M.J.; Cejudo-Bastante, C.; Cran, M.J.; Heredia, F.J.; Bigger, S.W. Optical, structural, mechanical and thermal characterization of antioxidant ethylene vinyl alcohol copolymer films containing betalain-rich beetroot. Food Packag. Shelf Life 2020, 24, 100502. [Google Scholar] [CrossRef]
- El-Saftawy, A.; Ragheb, M.; Zakhary, S. Electron beam irradiation impact on surface structure and wettability of ethylene-vinyl alcohol copolymer. Radiat. Phys. Chem. 2018, 147, 106–113. [Google Scholar] [CrossRef]
- Heikkinen, S.L.; Mikkonen, K.S.; Koivisto, P.; Heikkilä, M.I.; Pirkkalainen, K.; Liljeström, V.; Serimaa, R.; Tenkanen, M. Long-Term Physical Stability of Plasticized Hemicellulose Films. Bioresources 2013, 9, 906–921. [Google Scholar] [CrossRef][Green Version]
Extraction Method | Reaction Condition | Yield (%) |
---|---|---|
Alkali or alkaline peroxide solution | 2% NaOH, 90 °C | 49.2 |
2% NaOH, 60 °C | 43.9 | |
2% H2O2, pH11.5, 90 °C | 25.3 | |
4% H2O2, pH11.5, 90 °C | 51.7 | |
Two-step alkali extraction-delignification | 2% H2O2, pH11.5, 60 °C | 83.2 |
4% H2O2, pH11.5, 60 °C | 72.7 | |
0.75% NaClO, pH11.5, RT | 70.9 | |
1.5% NaClO, pH11.5, RT | 77.0 |
Biomass Source | Tensile Strength (MPa) | Elongation at Break (%) | Ref. |
---|---|---|---|
Bagasse | About 0.31~1.72 | — | [26] |
Cotton waste | 1.3 | — | [27] |
Oil palm leaf | 10 | — | [28] |
Barley bran | 50 | — | [29] |
Norway spruce | 55 | 2.7 | [30] |
Rape straw | About 101~218 | About 3~85 | [31] |
Reinforcing Agent | Proportion of the Film | Tensile Strength (MPa) | Elongation at Break (%) |
---|---|---|---|
MMT | V(QH):V(MMT) = 1:1 | 19.8 | 0.5 |
MMT/PVA | V(QH):V(MMT):V(PVA) = 1:1:0.3 | 55.7 | 3.9 |
MMT/NCH | V(QH):V(MMT):V(NCH) = 1:1:0.3 | 28.6 | 2.3 |
MMT/PVA | V(QH):V(MMT):V(PVA) = 1:1:0.5 | 46.3 | 4.0 |
MMT/NCH | V(QH):V(MMT):V(NCH) = 1:1:0.5 | 42.1 | 3.8 |
MMT/CS | V(QH):V(MMT):V(CS) = 1:1:0.05 | 52.7 | 2.6 |
MMT/CS | V(QH):V(MMT):V(CS) = 1:1:0.08 | 57.8 | 2.8 |
CNF Mass Fraction (%) | Tensile Strength (MPa) | Elongation at Break (%) |
---|---|---|
0 | 11.9 | 3.4 |
5 | 15.5 | 2.9 |
10 | 20.2 | 2.6 |
15 | 28.9 | 1.8 |
20 | 39.5 | 1.4 |
CNC Mass Fraction (%) | Tensile Strength (MPa) | Elongation at Break (%) |
---|---|---|
0 | 9.87 | 3.25 |
1.2 | 12.29 | 3.35 |
6.8 | 15.47 | 3.13 |
Film | Tensile Strength (MPa) | Elongation at Break (%) | Oxygen Permeability (cm3·μm/m2·d·kPa) | Moisture Barrier Property | Ref. |
---|---|---|---|---|---|
PET | 45 | 335 | 58.34 | WVTR: 1.49 | [67] |
PVDC | 47.12 | 42.4 | 2.88 | WVTR: 2.59 | [68] |
EVOH | 40 | 230 | 2.77 | WVTR: 0.60 | [69,70,71,72] |
Hemicellulose nanocomposite film | 19.8–55.7 | 0.5–4.0 | 0.30–0.66 | — | [36] |
CA crosslinked hemicellulose film | 2.0–10.0 | 5.7–44.4 | 1.8–5.4 | — | [65] |
PCL grafted hemicellulose film | 3.9–15.4 | 11.5-40 | — | — | [57] |
LHs | 9.78–33.94 | 2.97–22.41 | 1.21–4.24 | WVP: 1.59–2.23 | [48] |
Borate crosslinking GM/GO film | 78.95–135.54 | 8.82–9.62 | 0.11–0.25 | WVP: 0.38–0.58 | [66] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Sun, H.; Yang, B.; Weng, Y. Hemicellulose-Based Film: Potential Green Films for Food Packaging. Polymers 2020, 12, 1775. https://doi.org/10.3390/polym12081775
Zhao Y, Sun H, Yang B, Weng Y. Hemicellulose-Based Film: Potential Green Films for Food Packaging. Polymers. 2020; 12(8):1775. https://doi.org/10.3390/polym12081775
Chicago/Turabian StyleZhao, Yuelong, Hui Sun, Biao Yang, and Yunxuan Weng. 2020. "Hemicellulose-Based Film: Potential Green Films for Food Packaging" Polymers 12, no. 8: 1775. https://doi.org/10.3390/polym12081775