Next Article in Journal
Synthesis and Characterization of Clay Polymer Nanocomposites of P(4VP-co-AAm) and Their Application for the Removal of Atrazine
Next Article in Special Issue
Synthesis of a Novel Phosphorous-Nitrogen Based Charring Agent and Its Application in Flame-retardant HDPE/IFR Composites
Previous Article in Journal
Enhancing Saltiness Perception Using Chitin Nanomaterials
Previous Article in Special Issue
Density Effect on Flame Retardancy, Thermal Degradation, and Combustibility of Rigid Polyurethane Foam Modified by Expandable Graphite or Ammonium Polyphosphate
Article Menu
Issue 4 (April) cover image

Export Article

Open AccessArticle

Preparation and Characteristics of an Environmentally Friendly Hyperbranched Flame-Retardant Polyurethane Hybrid Containing Nitrogen, Phosphorus, and Silicon

1
Department of Chemical and Materials Engineering, Chinese Culture University, Yang-Ming-Shan, Taipei City 11114, Taiwan
2
Green Flame Retardant Material Research Laboratory, Department of Safety, Health and Environmental Engineering, Hung-Kuang University, Taichung 433, Taiwan
*
Author to whom correspondence should be addressed.
Polymers 2019, 11(4), 720; https://doi.org/10.3390/polym11040720
Received: 15 March 2019 / Revised: 11 April 2019 / Accepted: 13 April 2019 / Published: 19 April 2019
(This article belongs to the Special Issue Thermal Insulating and Fire-Resistant Polymer Composites)
  |  
PDF [5080 KB, uploaded 25 April 2019]
  |     |  

Abstract

The NCO functional group of 3-isocyanatoproplytriethoxysilane (IPTS) and the OH functional group of 10-(2,5-dihydroxyphenyl)-10H-9-oxa-10-phospha-phenantbrene-10-oxide (DOPO-BQ) were used to conduct an addition reaction. Following completion of the reaction, triglycidyl isocyanurate (TGIC) was introduced to conduct a ring-opening reaction. Subsequently, a sol–gel method was used to initiate a hydrolysis–condensation reaction on TGIC–IPTS–DOPO-BQ to form a hyperbranched nitrogen–phosphorous–silicon (HBNPSi) flame retardant. This flame retardant was incorporated into a polyurethane (PU) matrix to prepare a hybrid material. Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), limiting oxygen index (LOI), UV-VIS spectrophotometry, and Raman analysis were conducted to characterize the structure and analyze the transparency, thermal stability, flame retardancy, and residual char to understand the flame retardant mechanism of the prepared hybrid material. After the flame retardant was added, the maximum degradation rate decreased from −36 to −17 wt.%/min, the integral procedural decomposition temperature (IPDT) increased from 348 to 488 °C, and the char yield increased from 0.7 to 8.1 wt.%. The aforementioned results verified that the thermal stability of PU can be improved after adding HBNPSi. The LOI analysis indicated that the pristine PU was flammable because the LOI of pristine PU was only 19. When the content of added HBNPSi was 40%, the LOI value was 26; thus the PU hybrid became nonflammable. View Full-Text
Keywords: polyurethane; sol–gel method; hyperbranched hybrid; thermal stability; flame retardant polyurethane; sol–gel method; hyperbranched hybrid; thermal stability; flame retardant
Figures

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Chen, C.-H.; Chiang, C.-L. Preparation and Characteristics of an Environmentally Friendly Hyperbranched Flame-Retardant Polyurethane Hybrid Containing Nitrogen, Phosphorus, and Silicon. Polymers 2019, 11, 720.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Polymers EISSN 2073-4360 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top