Next Article in Journal
Design and Fabrication by Thermal Imprint Lithography and Mechanical Characterization of a Ring-Based PDMS Soft Probe for Sensing and Actuating Forces in Biological Systems
Previous Article in Journal
The Structure and Properties of Polyacrylonitrile Nascent Composite Fibers with Grafted Multi Walled Carbon Nanotubes Prepared by Wet Spinning Method
Previous Article in Special Issue
Recent Developments about Conductive Polymer Based Composite Photocatalysts
Article Menu

Export Article

Open AccessArticle
Polymers 2019, 11(3), 423; https://doi.org/10.3390/polym11030423

Sensitivity Enhancement of Acetone Gas Sensor using Polyethylene Glycol/Multi-Walled Carbon Nanotubes Composite Sensing Film with Thermal Treatment

1
Department of Electrical Engineering, National Chiao Tung University, 1001 University Road, Hsinchu City 30010, Taiwan
2
Institute of Electrical and Control Engineering, National Chiao Tung University, 1001 University Road, Hsinchu City 30010, Taiwan
*
Author to whom correspondence should be addressed.
Received: 14 December 2018 / Revised: 7 February 2019 / Accepted: 28 February 2019 / Published: 5 March 2019
(This article belongs to the Special Issue Polymeric Photocatalysts and Gas Sensors)
Full-Text   |   PDF [14440 KB, uploaded 5 March 2019]   |  

Abstract

There is a need to develop a chemiresistive gas sensor equipped with a thermostat over a wide area for the sensor, which can protect the sensor from the influence of ambient temperature due to the uniform temperature of the thermostat. In this paper, we demonstrated an acetone gas sensor based on a polyethylene glycol (PEG)/Multi-walled Carbon Nanotubes (MWCNTs) composite film, which was equipped with a thermostat. The sensor was operated at modest working temperatures for sensor sensitivity enhancement. The optimum design of the polyimide-based thermostat with widely uniform thermal distribution was investigated in detail. It was found that the temperature uniformity of the thermostat was achieved using double spiral geometry. The experimental results of the sensor response showed that the PEG/MWCNTs composite film with a moderate working temperature revealed a higher sensitivity than that without thermal treatment. Moreover, the sensing mechanisms of the PEG/MWCNTs composite gas sensor to acetone vapor were studied as well. View Full-Text
Keywords: acetone; polyethylene glycol; Multi-walled Carbon Nanotubes; thermostat; thermal distribution; temperature effect acetone; polyethylene glycol; Multi-walled Carbon Nanotubes; thermostat; thermal distribution; temperature effect
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Chiou, J.-C.; Wu, C.-C.; Lin, T.-M. Sensitivity Enhancement of Acetone Gas Sensor using Polyethylene Glycol/Multi-Walled Carbon Nanotubes Composite Sensing Film with Thermal Treatment. Polymers 2019, 11, 423.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Polymers EISSN 2073-4360 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top