The Effects of Strain Rates on Mechanical Properties and Failure Behavior of Long Glass Fiber Reinforced Thermoplastic Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Specimen Preparation
2.3. Tensile Testing Methods
2.4. Microscopic Characterization
3. Results and Discussion
3.1. Full-Field Strain Analysis
3.2. Effect of Strain Rate on the Mechanical Behaviors
3.3. Microscopic Failure Modes and Mechanisms Analysis
3.3.1. Micro-Failure Modes
3.3.2. Failure Mechanism Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kim, D.H.; Kang, S.Y.; Kim, H.J.; Kim, H.S. Strain rate dependent mechanical behavior of glass fiber reinforced polypropylene composites and its effect on the performance of automotive bumper beam structure. Compos. Part B Eng. 2019, 166, 483–496. [Google Scholar] [CrossRef]
- Huang, C.T.; Chen, L.J.; Chien, T.Y. Investigation of the Viscoelastic Behavior Variation of Glass Mat Thermoplastics (GMT) in Compression Molding. Polymers 2019, 11, 335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhai, Z.Y.; Jiang, B.Y.; Drummer, D. Tensile Creep Behavior of Quasi-Unidirectional E-Glass Fabric Reinforced Polypropylene Composite. Polymers 2018, 10, 661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, D.X.; Chen, L.; Yuan, Y.; Li, K.; Xu, M.Z.; Liu, X.B. Designing and Preparation of Fiber-Reinforced Composites with Enhanced Interface Adhesion. Polymers 2018, 10, 1128. [Google Scholar] [CrossRef] [Green Version]
- Mathijsen, D. Long fiber thermoplastics are a key technology in expanding existing markets for composites. Reinf. Plast. 2019, 63, 267–272. [Google Scholar] [CrossRef]
- Sambale, A.K.; Schoneich, M.; Stommel, M. Influence of the Processing Parameters on the Fiber-Matrix-Interphase in Short Glass Fiber-Reinforced Thermoplastics. Polymers 2017, 9, 221. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Geng, C.; Luo, F.; Liu, Y.; Wang, K.; Fu, Q.; He, B. Shear induced fiber orientation, fiber breakage and matrix molecular orientation in long glass fiber reinforced polypropylene composites. Mater. Sci. Eng. A 2011, 528, 3169–3176. [Google Scholar] [CrossRef]
- Henning, F.; Ernst, H.; Brüssel, R. LFTs for automotive applications. Reinf. Plast. 2005, 49, 24–33. [Google Scholar] [CrossRef]
- Ning, H.; Pillay, S.; Thattaiparthasarathy, K.B.; Vaidya, U.K. Design and manufacturing of long fiber thermoplastic composite helmet insert. Compos. Struct. 2017, 168, 792–797. [Google Scholar] [CrossRef]
- Balaji Thattaiparthasarathy, K.; Pillay, S.; Ning, H.; Vaidya, U.K. Process simulation, design and manufacturing of a long fiber thermoplastic composite for mass transit application. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1512–1521. [Google Scholar] [CrossRef]
- Zhou, Y.; Mallick, P.K. A non-linear damage model for the tensile behavior of an injection molded short E-glass fiber reinforced polyamide-6,6. Mater. Sci. Eng. A 2005, 393, 303–309. [Google Scholar] [CrossRef]
- Schoßig, M.; Bierögel, C.; Grellmann, W.; Mecklenburg, T. Mechanical behavior of glass-fiber reinforced thermoplastic materials under high strain rates. Polym. Test. 2008, 27, 893–900. [Google Scholar] [CrossRef]
- Fitoussi, J.; Bocquet, M.; Meraghni, F. Effect of the matrix behavior on the damage of ethylene-propylene glass fiber reinforced composite subjected to high strain rate tension. Compos. Part B Eng. 2013, 45, 1181–1191. [Google Scholar] [CrossRef] [Green Version]
- Notta-Cuvier, D.; Nciri, M.; Lauro, F.; Delille, R.; Chaari, F.; Robache, F.; Haugou, G.; Maalej, Y. Coupled influence of strain rate and heterogeneous fibre orientation on the mechanical behaviour of short-glass-fibre reinforced polypropylene. Mech. Mater. 2016, 100, 186–197. [Google Scholar] [CrossRef]
- Nciri, M.; Notta-Cuvier, D.; Lauro, F.; Chaari, F.; Maalej, Y.; Zouari, B. Modelling and characterisation of dynamic behaviour of short-fibre-reinforced composites. Compos. Struct. 2017, 160, 516–528. [Google Scholar] [CrossRef]
- Onishi, P.; Hashemi, S. Effect of fibre concentration and strain rate on mechanical properties of single-gated and double-gated injection-moulded short glass fibre-reinforced polypropylene copolymer composites. J. Mater. Sci. 2009, 44, 3445–3456. [Google Scholar] [CrossRef]
- Wilberforce, S.; Hashemi, S. Effect of fibre concentration, strain rate and weldline on mechanical properties of injection-moulded short glass fibre reinforced thermoplastic polyurethane. J. Mater. Sci. 2009, 44, 1333–1343. [Google Scholar] [CrossRef]
- Hashemi, S. Temperature, strain rate and weldine effects on strength and micromechanical parameters of short glass fibre reinforced polybutylene terephthalate (PBT). Polym. Test. 2011, 30, 801–810. [Google Scholar] [CrossRef]
- Okereke, M.I.; Paul Buckley, C.; Akpoyomare, A.I. The mechanism of rate-dependent off-axis compression of a low fibre volume fraction thermoplastic matrix composite. Compos. Struct. 2017, 168, 685–697. [Google Scholar] [CrossRef]
- Zhai, Z.; Jiang, B.; Drummer, D. Strain rate-dependent mechanical behavior of quasi-unidirectional E-glass fabric reinforced polypropylene composites under off-axis tensile loading. Polym. Test. 2018, 69, 276–285. [Google Scholar] [CrossRef]
- Brown, K.A.; Brooks, R.; Warrior, N.A. The static and high strain rate behaviour of a commingled E-glass/polypropylene woven fabric composite. Compos. Sci. Technol. 2010, 70, 272–283. [Google Scholar] [CrossRef]
- Duan, S.; Mo, F.; Yang, X.; Tao, Y.; Wu, D.; Peng, Y. Experimental and numerical investigations of strain rate effects on mechanical properties of LGFRP composite. Compos. Part B Eng. 2016, 88, 101–107. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, J.; Wu, L. Impact and energy absorption of long fiber-reinforced thermoplastic based on two-phase modeling and experiments. Int. J. Impact Eng. 2018, 122, 374–383. [Google Scholar] [CrossRef]
- Bartus, S.D.; Vaidya, U.K. Performance of long fiber reinforced thermoplastics subjected to transverse intermediate velocity blunt object impact. Compos. Struct. 2005, 67, 263–277. [Google Scholar] [CrossRef]
- Lienhard, J.; Schulenberg, L. Strain rate dependent multiaxial characterization of long fiber reinforced plastic. Compos. Part B Eng. 2018, 141, 164–173. [Google Scholar] [CrossRef]
- Goel, A.; Chawla, K.K.; Vaidya, U.K.; Chawla, N.; Koopman, M. Characterization of fatigue behavior of long fiber reinforced thermoplastic (LFT) composites. Mater. Charact. 2009, 60, 537–544. [Google Scholar] [CrossRef]
- Phelps, J.H.; Abd El-Rahman, A.I.; Kunc, V.; Tucker, C.L. A model for fiber length attrition in injection-molded long-fiber composites. Compos. Part A Appl. Sci. Manuf. 2013, 51, 11–21. [Google Scholar] [CrossRef]
- Mehdikhani, M.; Aravand, M.; Sabuncuoglu, B.; Callens, M.G.; Lomov, S.V.; Gorbatikh, L. Full-field strain measurements at the micro-scale in fiber-reinforced composites using digital image correlation. Compos. Struct. 2016, 140, 192–201. [Google Scholar] [CrossRef]
- Jones, I.; Iadicola, M.E. A Good Practices Guide for Digital Image Correlation. Int. Digit. Image Correl. Soc. 2018. [Google Scholar] [CrossRef]
- Li, L.; Sun, L.; Dai, Z.; Xiong, Z.; Huang, B.; Zhang, Y. Experimental investigation on mechanical properties and failure mechanisms of polymer composite-metal hybrid materials processed by direct injection-molding adhesion method. J. Mater. Process. Technol. 2019, 263, 385–395. [Google Scholar] [CrossRef]
- Codolini, A.; Li, Q.M.; Wilkinson, A. Mechanical characterization of thin injection-moulded polypropylene specimens under large in-plane shear deformations. Polym. Test. 2018, 69, 485–489. [Google Scholar] [CrossRef] [Green Version]
- Röhrig, C.; Scheffer, T.; Diebels, S. Mechanical characterization of a short fiber-reinforced polymer at room temperature: Experimental setups evaluated by an optical measurement system. Contin. Mech. Thermodyn. 2017, 29, 1093–1111. [Google Scholar] [CrossRef]
- McCormick, N.; Lord, J. Digital Image Correlation. Mater. Today 2010, 13, 52–54. [Google Scholar] [CrossRef]
- Cui, J.; Wang, Q.; Dong, D.; Hao, J.; Zhang, X.; Li, G. A study on the constitutive equation of HC420LA steel subjected to high strain rates. J. Mater. Res. 2019, 34, 1–9. [Google Scholar] [CrossRef]
- Del Rey Castillo, E.; Allen, T.; Henry, R.; Griffith, M.; Ingham, J. Digital image correlation (DIC) for measurement of strains and displacements in coarse, low volume-fraction FRP composites used in civil infrastructure. Compos. Struct. 2019, 212, 43–57. [Google Scholar] [CrossRef]
- Li, J.; Kan, Q.H.; Chen, K.J.; Liang, Z.H.; Kang, G.Z. In Situ Observation on Rate-Dependent Strain Localization of Thermo-Induced Shape Memory Polyurethane. Polymers 2019, 11, 982. [Google Scholar] [CrossRef] [Green Version]
- Billon, N.; Giraudeau, J.; Bouvard, J.L.; Robert, G. Mechanical Behavior-Microstructure Relationships in Injection-Molded Polyamide 66. Polymers 2018, 10, 47. [Google Scholar] [CrossRef] [Green Version]
- Szebenyi, G.; Hliva, V. Detection of Delamination in Polymer Composites by Digital Image Correlation-Experimental Test. Polymers 2019, 11, 523. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Xia, Y. Dynamic tensile properties of E-glass, Kevlar49 and polyvinyl alcohol fiber bundles. J. Mater. Sci. Lett. 2000, 19, 583–586. [Google Scholar] [CrossRef]
- Zrida, M.; Laurent, H.; Grolleau, V.; Rio, G.; Khlif, M.; Guines, D.; Masmoudi, N.; Bradai, C. High-speed tensile tests on a polypropylene material. Polym. Test. 2010, 29, 685–692. [Google Scholar] [CrossRef]
- Dasari, A.; Misra, R.D.K. On the strain rate sensitivity of high density polyethylene and polypropylenes. Mater. Sci. Eng. A 2003, 358, 356–371. [Google Scholar] [CrossRef]
- Gao, Y.; Xu, C.; He, Z.-P.; He, Y.-L.; Li, L. Response Characteristics and Adiabatic Heating during High Strain Rate for TRIP Steel and DP Steel. J. Iron Steel Res. Int. 2015, 22, 48–54. [Google Scholar] [CrossRef]
- Sorini, C.; Chattopadhyay, A.; Goldberg, R.K. Micromechanical modeling of the effects of adiabatic heating on the high strain rate deformation of polymer matrix composites. Compos. Struct. 2019, 215, 377–384. [Google Scholar] [CrossRef]
- Pan, Z.; Wu, Z.; Xiong, J. High-speed infrared imaging and mesostructural analysis of localized temperature rise in damage and failure behavior of 3-D braided carbon/epoxy composite subjected to high strain-rate compression. Polym. Test. 2019, 80, 106151. [Google Scholar] [CrossRef]
- Lienhard, J.; Böhme, W. Characterisation of resin transfer moulded composite laminates under high rate tension, compression and shear loading. Eng. Fract. Mech. 2015, 149, 338–350. [Google Scholar] [CrossRef]
- Zhai, Z.; Gröschel, C.; Drummer, D. Tensile behavior of quasi-unidirectional glass fiber/polypropylene composites at room and elevated temperatures. Polym. Test. 2016, 54, 126–133. [Google Scholar] [CrossRef]
Material | Density (g/cm3) | Tensile Strength (MPa) | Tensile Modulus (GPa) | Melt Flow Rate (g/10 min) |
---|---|---|---|---|
E-Glass fiber | 2.6 | 2000 | 75 | - |
PP | 0.9 | 28 | 1.2 | 2.6 |
LGFRPPs | 1.2 | 73.5 | 5.2 | - |
Strain Rate (s−1) | Fracture Time | Ultimate Average Strain | Fracture Strain (P0) |
---|---|---|---|
0.001 | 49 s | 0.023 | 0.028 |
0.01 | 4.8 s | 0.018 | 0.027 |
1 | 98.6 ms | 0.025 | 0.031 |
10 | 10.7 ms | 0.025 | 0.035 |
100 | 0.83 ms | 0.027 | 0.035 |
200 | 0.48 ms | 0.028 | 0.040 |
400 | 0.35 ms | 0.030 | 0.047 |
Strain Rate (s−1) | Young’s Modulus (GPa) | Ultimate Strength (MPa) | Total Elongation (%) |
---|---|---|---|
0.001 | 5.2 | 75.4 | 2.8 |
0.01 | 6.6 | 84.7 | 2.7 |
1 | 5.9 | 93.0 | 3.1 |
10 | 6.5 | 109.4 | 3.4 |
100 | 7.1 | 129.6 | 3.4 |
200 | 7.3 | 133.9 | 3.9 |
400 | 5.8 | 146.7 | 4.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, J.; Wang, S.; Wang, S.; Li, G.; Wang, P.; Liang, C. The Effects of Strain Rates on Mechanical Properties and Failure Behavior of Long Glass Fiber Reinforced Thermoplastic Composites. Polymers 2019, 11, 2019. https://doi.org/10.3390/polym11122019
Cui J, Wang S, Wang S, Li G, Wang P, Liang C. The Effects of Strain Rates on Mechanical Properties and Failure Behavior of Long Glass Fiber Reinforced Thermoplastic Composites. Polymers. 2019; 11(12):2019. https://doi.org/10.3390/polym11122019
Chicago/Turabian StyleCui, Junjia, Shaoluo Wang, Shuhao Wang, Guangyao Li, Peilin Wang, and Chengsong Liang. 2019. "The Effects of Strain Rates on Mechanical Properties and Failure Behavior of Long Glass Fiber Reinforced Thermoplastic Composites" Polymers 11, no. 12: 2019. https://doi.org/10.3390/polym11122019
APA StyleCui, J., Wang, S., Wang, S., Li, G., Wang, P., & Liang, C. (2019). The Effects of Strain Rates on Mechanical Properties and Failure Behavior of Long Glass Fiber Reinforced Thermoplastic Composites. Polymers, 11(12), 2019. https://doi.org/10.3390/polym11122019