Application of Photopolymer Materials in Holographic Technologies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Acrylate Compositions
2.2. Bayfol HX Photopolymers
3. Results and Discussion
3.1. Diffraction Beam Splitters
3.2. Protection Technologies
3.3. Elements Based on Periodic Structures for Energy Application
3.4. Holographic 3D Printing
- Use of materials with a radical polymerization and oxygen inhibition of the process. Oxygen contained in the air can enter through the upper surface of the material (it can also be forced) and limit the polymerization mainly in the upper part of the layer.
- Creating an appropriate absorption of the forming radiation in the material, for example, with the introduction of absorbent additives. In this case, the polymerization is limited mainly in the lower part of the layer.
- An increase in the radiation intensity gradient in the beam forming the reconstructed image that can be provided by the objective.
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fernández, R.; Gallego, S.; Márquez, A.; Francés, J.; Martínez, F.J.; Beléndez, A. Influence of index matching on AA/PVA photopolymers for low spatial frequency recording. Appl. Opt. 2015, 54, 3132–3140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández, R.; Bleda, S.; Gallego, S.; Neipp, C.; Márquez, A.; Tomita, Y.; Pascual, I.; Beléndez, A. Holographic waveguides in photopolymers. Opt. Express 2019, 27, 827–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández, R.; Gallego, S.; Márquez, A.; Francés, J.; Martínez, F.J.; Pascual, I.; Beléndez, A. Analysis of holographic polymer-dispersed liquid crystals (HPDLCs) for tunable low frequency diffractive optical elements recording. Opt. Mater. 2018, 76, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Semkin, A.; Sharangovich, S. Holographic formation of non-uniform diffraction structures by arbitrary polarized recording beams in liquid crystal-photopolymer compositions. Polymers 2019, 11, 861. [Google Scholar] [CrossRef] [Green Version]
- Smirnova, T.N.; Kokhtich, L.M.; Sakhno, O.V.; Stumpe, J. Holographic nanocomposites for recording polymer–nanoparticle periodic structures: I. General approach to choice of components of nanocomposites and their holographic properties. Opt. Spectrosc. 2011, 110, 129–136. [Google Scholar] [CrossRef]
- Smirnova, T.N.; Kokhtich, L.M.; Sakhno, O.V.; Stumpe, J. Holographic nanocomposites for recording polymer–nanoparticle periodic structures: II. Mechanism of formation of polymer–nanoparticle bulk periodic structure and effect of parameters of forming field on structure efficiency. Opt. Spectrosc. 2011, 110, 137–144. [Google Scholar] [CrossRef]
- Tomita, Y.; Hata, E.; Momose, K.; Takayama, S.; Liu, X.; Chikama, K.; Klepp, J.; Pruner, C.; Fally, M. Photopolymerizable nanocomposite photonic materials and their holographic applications in light and neutron optics. J. Mod. Opt. 2016, 63, S1–S31. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Chang, F.; Zhao, Y.; Li, Z.; Sun, X. Ultrafast volume holographic storage on PQ/PMMA photopolymers with nanosecond pulsed exposures. Opt. Express 2018, 26, 1072–1082. [Google Scholar] [CrossRef]
- Borisov, V.N.; Angervaks, A.E.; Ryskin, A.I.; Veniaminov, A.V. Two-model spectral study of volume holograms in materials with diffusion-based mechanisms. Opt. Eng. 2019, 58, 024102. [Google Scholar] [CrossRef]
- Guo, J.; Gleeson, M.R.; Sheridan, J.T. A review of the optimisation of photopolymer materials for holographic data storage. Phys. Res. Int. 2012, 2012, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Malallah, R.; Li, H.; Kelly, D.; Healy, J.; Sheridan, J. A review of hologram storage and self-written waveguides formation in photopolymer media. Polymers 2017, 9, 337. [Google Scholar] [CrossRef]
- Cody, D.; Gul, S.; Mikulchyk, T.; Irfan, M.; Kharchenko, A.; Goldyn, K.; Martin, S.; Mintova, S.; Cassidy, J.; Naydenova, I. Self-processing photopolymer materials for versatile design and fabrication of holographic sensors and interactive holograms. Appl. Opt. 2018, 57, 173–183. [Google Scholar] [CrossRef]
- Naydenova, I.; Cody, D.; Zawadzka, M.; Martin, S.; Mihaylova, E.; Curran, S.; Duffy, P.; Portillo, J.; Connell, D.; Mcdonnell, S.; et al. Serialized holography for brand protection and authentication. Appl. Opt. 2018, 57, 131–137. [Google Scholar]
- Pratheep, H.R.; Balamurugan, A. A review of holographic optical elements in solar concentrator applications. IJARIIT 2018, 4, 214–222. [Google Scholar]
- Ferrara, M.A.; Striano, V.; Coppola, G. Volume holographic optical elements as solar concentrators: An Overview. Appl. Sci. 2019, 9, 193. [Google Scholar] [CrossRef] [Green Version]
- Bruder, F.-K.; Fäcke, T.; Rölle, T. The chemistry and physics of Bayfol® HX film holographic polymers. Polymers 2017, 9, 472. [Google Scholar] [CrossRef] [Green Version]
- Denisjuk, I.J.; Burunkova, J.E.; Vorzobova, N.D.; Fokina, M.I.; Bulgakova, V.G. Liquid composition for photopolymerisation-able film for hologram recording, method of composition obtaining, method of obtaining said film. RU Patent 2541521, 20 February 2015. [Google Scholar]
- Vorzobova, N.D.; Bulgakova, V.G.; Moskalenko, A.I.; Pavlovets, I.M.; Denisyuk, I.; Burunkova, Y.E. Development of periodic and three-dimensional structures in acrylic-monomer photopolymer materials by holographic methods. Radiophys. Quantum Electron. 2015, 57, 8–9. [Google Scholar] [CrossRef]
- Sheridan, J.T.; Lawrence, J.R. Nonlocal-response diffusion model of holographic recording in photopolymer. J. Opt. Soc. Am. A 2000, 17, 1108–1114. [Google Scholar] [CrossRef]
- Vorzobova, N.D.; Sokolov, P.P.; Veselov, V.O.; Schelkanova, I.J. Holographic formation and diffractive properties of hybrid periodic structures. Appl.Opt. 2018, 57, 3323–3328. [Google Scholar] [CrossRef]
- Wen, F.J.; Chung, P.S. Two-dimensional optical splitters with polymer optical fibre arrays. J. Opt. A Pure Appl. Opt. 2007, 9, 723–727. [Google Scholar] [CrossRef]
- Akbari, H.; Naydenova, I.; Martin, S. Using acrylamide-based photopolymers for fabrication of holographic optical elements in solar energy applications. Appl. Opt. 2014, 53, 1343–1363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marín-Sáez, J.; Atencia, J.; Chemisana, D.; Collados, M.-V. Characterization of volume holographic optical elements recorded in Bayfol HX photopolymer for solar photovoltaic applications. Opt. Express 2016, 24, 720–730. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Nirala, A.K.; Yadav, H.L. Optical design and characterization of holographic solar concentrators for photovoltaic applications. Optik 2018, 168, 625–649. [Google Scholar] [CrossRef]
- Castro, J.M.; Zhang, D.; Myer, B.; Kostuk, R.K. Energy collection efficiency of holographic planar solar concentrators. Appl. Opt. 2010, 49, 858–870. [Google Scholar] [CrossRef] [PubMed]
- De Jong, T.M.; de Boer, D.K.G.; Bastiaansen, C.W.M. Surface-relief and polarization gratings for solar concentrators. Opt. Express 2011, 19, 15127–15143. [Google Scholar] [CrossRef] [Green Version]
- Akbari, H.; Naydenova, I.; Ahmed, H.; McCormack, S.; Martin, S. Development and testing of low spatial frequency holographic concentrator elements for collection of solar energy. Sol. Energy 2017, 155, 103–109. [Google Scholar] [CrossRef]
- Aswathy, G.; Rajesh, C.S.; Sreejith, M.S.; Vijayakumar, K.P.; Sudha Kartha, C. Designing photovoltaic concentrators using holographic lens recorded in nickel ion doped photopolymer material. Sol. Energy 2018, 163, 70–77. [Google Scholar] [CrossRef]
- Marin-Saez, J.; Atencia, J.; Chemisana, D.; Collados, M.V. Full modeling and experimental validation of cylindrical holographic lenses recorded in Bayfol HX photopolymer and partly operating in the transition regime for solar concentration. Opt. Express 2018, 26, 398–412. [Google Scholar] [CrossRef] [Green Version]
- Lloret, T.; Navarro-Fuster, V.; Ramírez, M.G.; Ortuño, M.; Neipp, C.; Beléndez, A.; Pascual, I. Holographic Lenses in an Environment-Friendly Photopolymer. Polymers 2018, 10, 302. [Google Scholar] [CrossRef] [Green Version]
- Vorzobova, N.D.; Bulgakova, V.G.; Veselov, V.O. Formation of 3D structures in a volumetric photocurable material via a holographic method. Opt. Spectrosc. 2015, 119, 1034–1037. [Google Scholar] [CrossRef]
- Vorzobova, N.D.; Bulgakova, V.G. Method of obtaining three-dimensional objects. RU Patent 2646086 C1, 1 March 2018. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vorzobova, N.; Sokolov, P. Application of Photopolymer Materials in Holographic Technologies. Polymers 2019, 11, 2020. https://doi.org/10.3390/polym11122020
Vorzobova N, Sokolov P. Application of Photopolymer Materials in Holographic Technologies. Polymers. 2019; 11(12):2020. https://doi.org/10.3390/polym11122020
Chicago/Turabian StyleVorzobova, Nadezhda, and Pavel Sokolov. 2019. "Application of Photopolymer Materials in Holographic Technologies" Polymers 11, no. 12: 2020. https://doi.org/10.3390/polym11122020
APA StyleVorzobova, N., & Sokolov, P. (2019). Application of Photopolymer Materials in Holographic Technologies. Polymers, 11(12), 2020. https://doi.org/10.3390/polym11122020