Vinyl Phosphate-Functionalized, Magnetic, Molecularly-Imprinted Polymeric Microspheres’ Enrichment and Carbon Dots’ Fluorescence-Detection of Organophosphorus Pesticide Residues
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Software for Molecular Simulation
2.3. HPLC Analysis Conditions
2.4. The Synthesis of MMIPs, CDs, and CDs@VPA
2.5. Adsorption Experiment of MMIPs
2.5.1. Adsorption Kinetics and Thermodynamics of MMPs
2.5.2. Adsorption Selectivity and Reusability of MMIPs
2.6. Structural Characterization of MMIPs, CDs, and CDs@VPA
2.7. Fluorescence Detection of Triazophos
2.8. Data Analysis
3. Results and Discussion
3.1. Molecular Simulation
3.1.1. Molecular Simulation to Screen Optimal Functional Monomer
3.1.2. Optimizing the Molar Ratio of Triazophos to VPA and 1-Oc
3.2. Optimization of the Synthesis of MMIPs
3.3. Adsorption Study of MMIPs
3.3.1. Kinetics of Adsorption on MMIPs
3.3.2. Thermodynamics of Adsorption on MMIPs
3.3.3. Competitive Selectivity and Reusability of MMIPs
3.4. Characterization of MMIPs
3.5. Optimization of CDs and CDs@VPA Synthesis
3.6. Characterization and FL Test of CDs@VPA
3.6.1. Characterization of CDs and CDs@VPA
3.6.2. Measurement of Triazophos by CDs@VPA in Cucumber
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boulanouar, S.; Mezzache, S.; Combes, A.; Pichon, V. Molecularly imprinted polymers for the determination of organophosphorus pesticides in complex samples. Talanta 2018, 176, 465–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Zhang, X.; Xu, Z.; Gao, H. Simultaneous Determination of Three Trace Organophosphorus Pesticide Residues in Vegetables Using Molecularly Imprinted Solid-Phase Extraction Coupled with High-Performance Liquid Chromatography. Food Anal. Methods 2015, 8, 1–8. [Google Scholar] [CrossRef]
- Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular imprinting: Perspectives and applications. Chem. Soc. Rev. 2016, 45, 2137–2211. [Google Scholar] [CrossRef] [PubMed]
- Paradiso, V.M.; Squeo, G.; Pasqualone, A.; Caponio, F.; Summo, C. An easy and green tool for olive oils labelling according to the contents of hydroxytyrosol and tyrosol derivatives: Extraction with a natural deep eutectic solvent and direct spectrophotometric analysis. Food Chem. 2019, 291, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Hadian, Z.; Eslamizad, S.; Yazdanpanah, H. Pesticide Residues Analysis in Iranian Fruits and Vegetables by Gas Chromatography-Mass Spectrometry. Iran. J. Pharm. Res. 2019, 18, 275–285. [Google Scholar] [PubMed]
- Dong, B.; Li, H.; Mujtaba Mari, G.; Yu, X.; Yu, W.; Wen, K.; Ke, Y.; Shen, J.; Wang, Z. Fluorescence immunoassay based on the inner-filter effect of carbon dots for highly sensitive amantadine detection in foodstuffs. Food Chem. 2019, 294, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Z.T.; Han, Y.; Han, X.X.; Xu, H.; Li, W.X.Y.; Song, D.; Berger, T.W.; Cheung, R.C.C. ASIC Implementation of a Nonlinear Dynamical Model for Hippocampal Prosthesis. Neural Comput. 2018, 30, 2472–2499. [Google Scholar] [CrossRef]
- Lv, P.; Xie, D.; Zhang, Z. Magnetic carbon dots based molecularly imprinted polymers for fluorescent detection of bovine hemoglobin. Talanta 2018, 188, 145–151. [Google Scholar] [CrossRef]
- Huang, L.J.; Sun, D.W.; Pu, H.B.; Wei, Q.Y.; Luo, L.P.; Wang, J.L. A colorimetric paper sensor based on the domino reaction of acetylcholinesterase and degradable gamma-MnOOH nanozyme for sensitive detection of organophosphorus pesticides. Sens. Actuators B Chem. 2019, 290, 573–580. [Google Scholar] [CrossRef]
- Bello-Ramirez, A.M.; Carreon-Garabito, B.Y.; Nava-Ocampo, A.A. A theoretical approach to the mechanism of biological oxidation of organophosphorus pesticides. Toxicology 2000, 149, 63–68. [Google Scholar] [CrossRef]
- Shariati, R.; Rezaei, B.; Jamei, H.R.; Ensafi, A.A. Application of coated green source carbon dots with silica molecularly imprinted polymers as a fluorescence probe for selective and sensitive determination of phenobarbital. Talanta 2019, 194, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Chu, K.W.; Lee, S.L.; Chang, C.J.; Liu, L.Y. Recent Progress of Carbon Dot Precursors and Photocatalysis Applications. Polymers 2019, 11, 689. [Google Scholar] [CrossRef] [PubMed]
- Rossini, E.L.; Milani, M.I.; Pezza, H.R. Green synthesis of fluorescent carbon dots for determination of glucose in biofluids using a paper platform. Talanta 2019, 201, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Hua, Y.F.; Liang, Y.R.; Han, J.J.; Liu, D.H.; Zhao, W.T.; Wang, P. Synthesis of novel beta-cyclodextrin functionalized S, N codoped carbon dots for selective detection of testosterone. Biosens. Bioelectron. 2017, 98, 195–201. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Yan, H.H.; Li, X.J.; Wang, X.H. In situ fabrication of carbon dots-based lubricants using a facile ultrasonic approach. Green. Chem. 2019, 21, 2279–2285. [Google Scholar] [CrossRef]
- Fu, X.; Fu, X.; Li, W.Y.; Chen, Y.P.; Cai, Z.X. Ovalbumin as a Precursor for Green Synthesis of Highly Fluorescent Carbon Dots for Cell Imaging. J. Biomed. Nanotechnol. 2019, 15, 1232–1240. [Google Scholar] [CrossRef]
- Kaur, H.; Raj, P.; Sharma, H.; Verma, M.; Singh, N.; Kaur, N. Highly selective and sensitive fluorescence sensing of nanomolar Zn2+ ions in aqueous medium using Calix 4 arene passivated Carbon Quantum Dots based on fluorescence enhancement: Real-time monitoring and intracellular investigation. Anal. Chim. Acta 2018, 1009, 1–11. [Google Scholar] [CrossRef]
- Song, T.; Zhang, P.Y.; Wang, T.T.; Ali, A.; Zeng, H.P. Alkali-assisted fabrication of holey carbon nitride nanosheet with tunable conjugated system for efficient visible-light-driven water splitting. Appl. Catal. B Environ. 2018, 224, 877–885. [Google Scholar] [CrossRef]
- Zhou, Y.; Sharma, S.K.; Peng, Z.; Leblanc, R.M. Polymers in Carbon Dots: A Review. Polymers 2017, 9, 67. [Google Scholar] [CrossRef]
- Shamsipur, M.; Barati, A.; Karami, S. Long-wavelength, multicolor, and white-light emitting carbon-based dots: Achievements made, challenges remaining, and applications. Carbon 2017, 124, 429–472. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Y.; Geng, W.; Liu, H. Rapid detection of tryptamine by optosensor with molecularly imprinted polymers based on carbon dots-embedded covalent-organic frameworks. Sens. Actuators B Chem. 2019, 285, 546–552. [Google Scholar] [CrossRef]
- Li, G.Y.; Zhang, K.; Fizir, M.; Niu, M.C.; Sun, C.; Xi, S.L.; Hui, X.H.; Shi, J.R.; He, H. Rational design, preparation and adsorption study of a magnetic molecularly imprinted polymer using a dummy template and a bifunctional monomer. New J. Chem. 2017, 41, 7092–7101. [Google Scholar] [CrossRef]
- Wang, L.; Zhi, K.; Zhang, Y.; Liu, Y.; Zhang, L.; Yasin, A.; Lin, Q. Molecularly Imprinted Polymers for Gossypol via Sol-Gel, Bulk, and Surface Layer Imprinting: A Comparative Study. Polymers 2019, 11, 602. [Google Scholar] [CrossRef] [PubMed]
- Kubo, T.; Koterasawa, K.; Naito, T.; Otsuka, K. Molecularly imprinted polymer with a pseudo-template for thermo-responsive adsorption/desorption based on hydrogen bonding. Microporous Mesoporous Mater. 2015, 218, 112–117. [Google Scholar] [CrossRef]
- Liu, L.Y.; Zhu, X.D.; Zeng, Y.B.; Wang, H.L.; Lu, Y.X.; Zhang, J.; Yin, Z.Z.; Chen, Z.D.; Yang, Y.W.; Li, L. An Electrochemical Sensor for Diphenylamine Detection Based on Reduced Graphene Oxide/Fe3O4-Molecularly Imprinted Polymer with 1,4-Butanediyl-3,3-bis-l-vinylimidazolium Dihexafluorophosphate Ionic Liquid as Cross-Linker. Polymers 2018, 10, 1329. [Google Scholar] [CrossRef]
- Xu, X.; Xu, G.; Wei, F.; Cen, Y.; Shi, M.; Cheng, X.; Chai, Y.; Sohail, M.; Hu, Q. Carbon dots coated with molecularly imprinted polymers: A facile bioprobe for fluorescent determination of caffeic acid. J. Colloid Interface Sci. 2018, 529, 568–574. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Deng, H.; Fan, Y.; Hu, Y.; Guo, Y.; Xie, L. Rapid Colorimetric Detection of Cartap Residues by AgNP Sensor with Magnetic Molecularly Imprinted Microspheres as Recognition Elements. Molecules 2018, 23, 1443. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.W.; Guo, J.F.; Zhang, Y.P.; Hu, Y.C.; You, Q.P.; Shi, S.Y. Novel molecular imprinted polymers over magnetic mesoporous silica microspheres for selective and efficient determination of protocatechuic acid in Syzygium aromaticum. Food Chem. 2015, 178, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Deng, H.; Wu, M.; Shu, X.; Ma, Q.; Shi, S.; Xie, L.; Guo, Y. Magnetic surface molecularly imprinted polymeric microspheres using gallic acid as segment template for excellent recognition of ester-catechins. Anal. Methods 2018, 10, 3317. [Google Scholar] [CrossRef]
- Deng, H.; Wang, B.; Wu, M.; Deng, B.; Xie, L.; Guo, Y. Rapidly colorimetric detection of caffeine in beverages by silver nanoparticle sensors coupled with magnetic molecularly imprinted polymeric microspheres. Int. J. Food Sci. Technol. 2019, 54, 202–211. [Google Scholar] [CrossRef]
- Gumus, M.K.; Kansiz, S.; Aydemir, E.; Gorobets, N.Y.; Dege, N. Structural features of 7-methoxy-5-methy1-2-(pyridin-3-y1)-11,12-dihydro-5,11-methano[1,2,4]triazolo[1,5-c][1,3,5]benzoxadiazocine: Experimental and theoretical (HF and DFT) studies, surface properties (MEP, Hirshfeld). J. Mol. Struct. 2018, 1168, 280–290. [Google Scholar] [CrossRef]
- Yang, W.M.; Liu, L.K.; Ni, X.N.; Zhou, W.; Huang, W.H.; Liu, H.; Xu, W.Z. Computer-aided design and synthesis of magnetic molecularly imprinted polymers with high selectivity for the removal of phenol from water. J. Sep. Sci. 2016, 39, 503–517. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.G.; Lee, C.J.; Yang, J.; Chang, C.H.; Sathiyendiran, M.; Lu, Z.Z.; Lu, K.L. Rhenium-Based Molecular Trap as an Evanescent Wave Infrared Chemical Sensing Medium for the Selective Determination of Amines in Air. ACS Appl. Mater. Interfaces 2016, 8, 35634–35640. [Google Scholar] [CrossRef] [PubMed]
- Chin, K.; Chang, S.M. SiO2-Coated Molecularly Imprinted Copolymer Nanostructures for the Adsorption of Bisphenol, A. ACS Appl. Nano Mater. 2019, 2, 89–99. [Google Scholar] [CrossRef]
- Wan, Y.Y.; Wang, M.; Fu, Q.F.; Wang, L.J.; Wang, D.D.; Zhang, K.L.; Xia, Z.N.; Gao, D. Novel dual functional monomers based molecularly imprinted polymers for selective extraction of myricetin from herbal medicines. J. Chromatogr. B 2018, 1097, 1–9. [Google Scholar] [CrossRef]
- Yuan, Y.A.; Yang, C.L.; Lv, T.W.; Qiao, F.X.; Zhou, Y.; Yan, H.Y. Green synthesis of hydrophilic protein-imprinted resin with specific recognition of bovine serum albumin in aqueous matrix. Anal. Chim. Acta 2018, 1033, 213–220. [Google Scholar] [CrossRef]
- Singh, V. Natural source derived carbon nano-onions as electrode material for sensing applications. Diam. Relat. Mater. 2018, 87, 202–207. [Google Scholar] [CrossRef]
- Hua, F.; Wang, H. Uptake modes of octadecane by Pseudomonas sp DG17 and synthesis of biosurfactant. J. Appl. Microbiol. 2012, 112, 25–37. [Google Scholar] [CrossRef]
- Lu, Q.C.; Qiu, M.; Zhao, M.Y.; Li, Z.; Li, Y.Z. Modification of NFA-Conjugated Bridges with Symmetric Structures for High-Efficiency Non-Fullerene PSCs. Polymers 2019, 11, 958. [Google Scholar] [CrossRef]
- Ni, X.M.; Li, Z.H.; Wang, Y.B. Adsorption Characteristics of Anionic Surfactant Sodium Dodecylbenzene Sulfonate on the Surface of Montmorillonite Minerals. Front. Chem. 2018, 6, 390. [Google Scholar] [CrossRef] [Green Version]
- Cho, K.Y.; Seo, J.Y.; Kim, H.J.; Pai, S.J.; Do, X.H.; Yoon, H.G.; Hwang, S.S.; Han, S.S.; Baek, K.Y. Facile control of defect site density and particle size of UiO-66 for enhanced hydrolysis rates: Insights into feasibility of Zr(IV)-based metal-organic framework (MOF) catalysts. Appl. Catal. B Environ. 2019, 245, 635–647. [Google Scholar] [CrossRef]
- Tammina, S.K.; Yang, D.Z.; Li, X.; Koppala, S.; Yang, Y.L. High photoluminescent nitrogen and zinc doped carbon dots for sensing Fe3+ ions and temperature. Spectrochim. Acta A 2019, 222, 117141. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.K.; Wu, Y.Y.; Wang, H.T.; Liu, S.; Song, L.; Li, S.; Tan, M.Q. Carbon quantum dots from roasted Atlantic salmon (Salmo salar L.): Formation, biodistribution and cytotoxicity. Food Chem. 2019, 293, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Ming, F.L.; Hou, J.Z.; Hou, C.J.; Yang, M.; Wang, X.F.; Li, J.W.; Huo, D.Q.; He, Q. One-step synthesized fluorescent nitrogen doped carbon dots from thymidine for Cr (VI) detection in water. Spectrochim. Acta A 2019, 222, 117165. [Google Scholar] [CrossRef]
- Wang, F.; Xie, Z.; Zhang, H.; Liu, C.-Y.; Zhang, Y.-G. Highly Luminescent Organosilane-Functionalized Carbon Dots. Adv. Funct. Mater. 2011, 21, 1027–1031. [Google Scholar] [CrossRef]
- Jindal, S.; Giripunje, S.M. An insight into electronic and optical properties of multilayer graphene quantum dots synthesized by hydrothermal approach. Synth. Met. 2018, 239, 36–42. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, L.; Wang, Z.; Sun, Y.; Liu, Q.; Dong, W.; Hao, A. Fluorescent carbon dots based sensing system for detection of enrofloxacin in water solutions. Spectrochim. Acta A 2019, 219, 15–22. [Google Scholar] [CrossRef]
- Ahn, B.; Kim, D.; Kim, K.; Kim, I.J.; Kim, H.J.; Kang, C.H.; Lee, J.Y.; Kim, W. Effect of the functional group of silanes on the modification of silica surface and the physical properties of solution styrene-butadiene rubber/silica composites. Compos. Interface 2019, 26, 585–596. [Google Scholar] [CrossRef]
- Brambilla, M.; Brennan, M.B.; Csatayova, K.; Davies, S.G.; Fletcher, A.M.; Kennett, A.M.R.; Lee, J.A.; Roberts, P.M.; Russell, A.J.; Thomson, J.E. Probing Competitive and Co-operative Hydroxyl and Ammonium Hydrogen-Bonding Directed Epoxidations. J. Org. Chem. 2017, 82, 10297–10309. [Google Scholar] [CrossRef]
Compounds | Minimum Energy (Ha) | Binding Energy (Ha) | Binding Energy (kJ mol−1) |
---|---|---|---|
MAA | −306.4925 | / | / |
4-VP | −325.6957 | / | / |
VPA | −646.3007 | / | / |
1-Oc | −706.9781 | / | / |
Triazophos | −1597.6121 | / | / |
Triazophos - MAA | −1904.1237 | 0.0191 | 50.1471 |
Triazophos - 4-VP | −1923.3311 | 0.0232 | 60.9116 |
Triazophos - VPA | −2243.9627 | 0.0499 | 131.0125 |
Triazophos - 1-Oc | −2304.7253 | 0.1351 | 354.7051 |
Triazophos-MAA-4-VP | −2229.8741 | 0.0738 | 193.7619 |
Triazophos-MAA-VPA | −2550.5043 | 0.0990 | 259.9245 |
Triazophos-MAA-1-Oc | −2611.2362 | 0.1535 | 403.0143 |
Triazophos-4-VP-VPA | −2569.7154 | 0.1069 | 280.6660 |
Triazophos-4-VP-1-Oc | −2630.4462 | 0.1603 | 420.8677 |
Triazophos–VPA–1-Oc | −2951.0872 | 0.1963 | 515.3857 |
Monomer | Q (mmol g−1) | α | |
---|---|---|---|
MMIPs | MNIPs | ||
MAA | 0.2209 | 0.0898 | 2.460 |
4-VP | 0.2315 | 0.0902 | 2.567 |
VPA | 0.2435 | 0.0811 | 3.003 |
1-Oc | 0.2599 | 0.0831 | 3.128 |
Detection Method | Linear Range (mmol L−1) | LOD (mmol L−1) | Detection Time (min) | Concentration of Triazophos (mmol kg−1) |
---|---|---|---|---|
HPLC | 0.0006–5.0 | 2.0 × 10−6 | 30 | 0.0049 ± 0.0011 * |
MMIPs−CDs@VPA FL | 0.0035–0.2 | 0.0015 | 2 | 0.0044 ± 0.0018 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, M.; Fan, Y.; Li, J.; Lu, D.; Guo, Y.; Xie, L.; Wu, Y. Vinyl Phosphate-Functionalized, Magnetic, Molecularly-Imprinted Polymeric Microspheres’ Enrichment and Carbon Dots’ Fluorescence-Detection of Organophosphorus Pesticide Residues. Polymers 2019, 11, 1770. https://doi.org/10.3390/polym11111770
Wu M, Fan Y, Li J, Lu D, Guo Y, Xie L, Wu Y. Vinyl Phosphate-Functionalized, Magnetic, Molecularly-Imprinted Polymeric Microspheres’ Enrichment and Carbon Dots’ Fluorescence-Detection of Organophosphorus Pesticide Residues. Polymers. 2019; 11(11):1770. https://doi.org/10.3390/polym11111770
Chicago/Turabian StyleWu, Mao, Yajun Fan, Jiawei Li, Danqing Lu, Yaping Guo, Lianwu Xie, and Yiqiang Wu. 2019. "Vinyl Phosphate-Functionalized, Magnetic, Molecularly-Imprinted Polymeric Microspheres’ Enrichment and Carbon Dots’ Fluorescence-Detection of Organophosphorus Pesticide Residues" Polymers 11, no. 11: 1770. https://doi.org/10.3390/polym11111770
APA StyleWu, M., Fan, Y., Li, J., Lu, D., Guo, Y., Xie, L., & Wu, Y. (2019). Vinyl Phosphate-Functionalized, Magnetic, Molecularly-Imprinted Polymeric Microspheres’ Enrichment and Carbon Dots’ Fluorescence-Detection of Organophosphorus Pesticide Residues. Polymers, 11(11), 1770. https://doi.org/10.3390/polym11111770