Next Article in Journal
Preparation and Characterization of Regenerated Cellulose Film from a Solution in Lithium Bromide Molten Salt Hydrate
Previous Article in Journal
Chirality Construction from Preferred π-π Stacks of Achiral Azobenzene Units in Polymer: Chiral Induction, Transfer and Memory
Article Menu
Issue 6 (June) cover image

Export Article

Open AccessArticle

Effects of Modified Graphene Oxide on Thermal and Crystallization Properties of PET

Institute of Hybrid Materials, The National Base of International Scientific and Technological Cooperation on Hybrid Materials, The National Base of Polymer Hybrid Materials in the Programme of Introducing Talents Dicipline to Universities, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
Authors to whom correspondence should be addressed.
Polymers 2018, 10(6), 613;
Received: 11 May 2018 / Revised: 29 May 2018 / Accepted: 31 May 2018 / Published: 4 June 2018
PDF [3428 KB, uploaded 4 June 2018]


In this article, graphene oxide nanosheets grafted with low molecular weight poly(ethylene terephthalate) were in situ synthesized via carboxylation, acyl chlorination and grafting modification in order to improve the compatibility between GO and PET phases and enhance the thermal stability and crystallization properties of PET. Fourier Transform Infrared (FTIR), X-ray Photoelectron Spectroscopy (XPS), and Atomic Force Microscopy (AFM) characterization results demonstrated that LMPET chains have been successfully grafted onto the surface of GO. To further investigate the influence of modified GO on properties of PET, modified PET was prepared by incorporating the GL-g-LMPET nanofillers into the PET matrix using the melt-blending method. Due to the similar polarity and strong interaction between LMPET and PET molecules, GL-g-LMPET nanofillers were homogeneously dispersed in PET matrix. Thermal properties and crystallization properties of obtained nanocomposites were systematically characterized using Differential Scanning Calorimetry (DSC), X-ray Diffraction (XRD), and Thermo Gravimetric Analysis (TGA). Results show that GL-g-LMPET nanofillers could improve the thermal stability of PET, e.g., increase up to 16.6 °C in temperature at the maximum rate of weight loss. In addition, the GL-g-LMPET also acts as an efficient nucleating agent for PET, exhibiting (1) higher crystallization temperatures; (2) higher degrees of crystallinity; and (3) faster rates of crystallization. View Full-Text
Keywords: PET; functionalized graphene oxide; thermal stability; crystallization property PET; functionalized graphene oxide; thermal stability; crystallization property

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Xing, L.; Wang, Y.; Wang, S.; Zhang, Y.; Mao, S.; Wang, G.; Liu, J.; Huang, L.; Li, H.; Belfiore, L.A.; Tang, J. Effects of Modified Graphene Oxide on Thermal and Crystallization Properties of PET. Polymers 2018, 10, 613.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Polymers EISSN 2073-4360 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top