Preparation and Characterization of Regenerated Cellulose Film from a Solution in Lithium Bromide Molten Salt Hydrate
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cellulose Film Preparation in Aqueous Libr Solutions
2.3. Characterization
3. Results and Discussion
3.1. FT-IR Analysis
3.2. CP/MAS 13C NMR Analysis
3.3. XRD Analysis
3.4. SEM Analysis
3.5. UV-Vis Spectrophotometric Analysis
3.6. Mechanical Properties of Films
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Tardy, A.; Nicolas, J.; Gigmes, D.; Lefay, C.; Guillaneuf, Y. Radical ring-opening polymerization: Scope, limitations, and application to (bio)degradable materials. Chem. Rev. 2017, 117, 1319–1406. [Google Scholar] [CrossRef] [PubMed]
- Sanla-Ead, N.; Jangchud, A.; Chonhenchob, V.; Suppakul, P. Antimicrobial activity of cinnamaldehyde and eugenol and their activity after incorporation into cellulose-based packaging films. Packag. Technol. Sci. 2012, 25, 7–17. [Google Scholar] [CrossRef]
- Ma, J.; Zhu, W.; Min, D.; Wang, Z.; Zhou, X. Preparation of antibacterial self-reinforced zinc oxide–cellulose composite by the synthesis of ZnO in partially dissolved cellulose. Cellulose 2016, 23, 3199–3208. [Google Scholar] [CrossRef]
- Cheng, D.; An, X.Y.; Zhang, J.H.; Tian, X.F.; He, Z.B.; Wen, Y.B.; Ni, Y.H. Facile preparation of regenerated cellulose film from cotton linter using organic electrolyte solution (OES). Cellulose 2017, 24, 1631–1639. [Google Scholar] [CrossRef]
- Hinner, L.P.; Wissner, J.L.; Beurer, A.; Nebel, B.A.; Hauer, B. Homogeneous vinyl ester-based synthesis of different cellulose derivatives in 1-ethyl-3-methyl-imidazolium acetate. Green Chem. 2016, 18, 6099–6107. [Google Scholar] [CrossRef]
- Guillou, J.; Lavadiya, D.N.; Munro, T.; Fronk, T.; Ban, H. From lignocellulose to biocomposite: Multi-level modelling and experimental investigation of the thermal properties of kenaf fiber reinforced composites based on constituent materials. Appl. Therm. Eng. 2018, 128, 1372–1381. [Google Scholar] [CrossRef]
- Dupont, A.L. Cellulose in lithium chloride/N,N-dimethylacetamide, optimisation of a dissolution method using paper substrates and stability of the solutions. Polymer 2003, 44, 4117–4126. [Google Scholar] [CrossRef]
- Stryuk, S.; Eckelt, J.; Wolf, B. Solutions of cellulose in DMAc + LiCl: Migration of the solute in an electrical field. Cellulose 2005, 12, 145–149. [Google Scholar] [CrossRef]
- Cazón, P.; Velazquez, G.; Ramírez, J.A.; Vázquez, M. Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocolloid. 2017, 68, 136–148. [Google Scholar] [CrossRef]
- Swatloski, R.P.; Spear, S.K.; Holbrey, J.D.; Rogers, R.D. Dissolution of cellose with ionic liquids. J. Am. Chem. Soc. 2002, 124, 4974–4975. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Q.; Wang, H.H.; Liu, C.F.; Zhang, A.P.; Ren, J.L. Synthesis of thermoplastic xylan-lactide copolymer with amidine-mediated organocatalyst in ionic liquid. Sci. Rep. 2017, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Rynkowska, E.; Fatyeyeva, k.; Kujawa, J.; Dzieszkowski, K.; Wolan, A.; Kujawski, W. The effect of reactive ionic liquid or plasticizer incorporation on the physicochemical and transport properties of cellulose acetate propionate-based membranes. Polymers 2018, 10, 86. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, Y.G.; Li, Y.Q.; Lu, Z.X.; Cao, S.L.; Fan, M.Z.; Huang, L.L.; Chen, L.H. Facile cellulose dissolution and characterization in the newly synthesized 1,3-diallyl-2-ethylimidazolium acetate ionic liquid. Polymers 2017, 9, 526. [Google Scholar] [CrossRef]
- Mendes, F.R.S.; Bastos, M.S.R.; Mendes, L.G.; Silva, A.R.A.; Sousa, F.D.; Monteiro-Moreira, A.C.O.; Cheng, H.N.; Biswas, A.; Moreira, R.A. Preparation and evaluation of hemicellulose films and their blends. Food Hydrocolloid. 2017, 70, 181–190. [Google Scholar] [CrossRef]
- Chinsirikul, W.; Rojsatean, J.; Hararak, B.; Kerddonfag, N.; Aontee, A.; Jaieau, K.; Kumsang, P.; Sripethdee, C. Flexible and tough poly(lactic acid) films for packaging applications: Property and processability improvement by effective reactive blending. Packag. Technol. Sci. 2015, 28, 741–759. [Google Scholar] [CrossRef]
- Jambeck, J.R.; Geter, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef] [PubMed]
- Yudianti, R.; Syampurwadi, A.; Onggo, H.; Karina, M.; Uyama, H.; Azuma, J. Properties of bacterial cellulose transparent film regenerated from dimethylacetamide–LiCl solution. Polym. Advan. Technol. 2016, 27, 1102–1107. [Google Scholar] [CrossRef]
- Quanling, Y.; Tsuguyuki, S.; Akira, I. Transparent, flexible, and high-strength regenerated cellulose/saponite nanocomposite films with high gas barrier properties. J. Appl. Polym. Sci. 2013, 130, 3168–3174. [Google Scholar]
- Ashok, B.; Reddy, K.O.; Madhukar, K.; Cai, J.; Zhang, L.; Rajulu, A.V. Properties of cellulose/thespesia lampas short fibers bio-composite films. Carbohydr. Polym. 2015, 127, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Huber, T.; Müssig, J.; Curnow, O.; Pang, S.; Bickerton, S.; Staiger, M.P. A critical review of all-cellulose composites. J. Mater. Sci. 2012, 47, 1171–1186. [Google Scholar] [CrossRef]
- Zhang, J.M.; Luo, N.; Zhang, X.Y.; Xu, L.L.; Wu, L.; Yu, J.; He, J.S.; Zhang, J. All-cellulose nanocomposites reinforced with in situ retained cellulose nanocrystals during selective dissolution of cellulose in an ionic liquid. ACS Sustain. Chem. Eng. 2016, 4, 4417–4423. [Google Scholar] [CrossRef]
- Yan, C.; Huiquan, L.; Yi, Z.; Jun, Z.; Jiasong, H. Structure and properties of novel regenerated cellulose films prepared from cornhusk cellulose in room temperature ionic liquids. J. Appl. Polym. Sci. 2010, 116, 547–554. [Google Scholar]
- Reddy, K.O.; Zhang, J.; Zhang, J.; Rajulu, A.V. Preparation and properties of self-reinforced cellulose composite films from agave microfibrils using an ionic liquid. Carbohydr. Polym. 2014, 114, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Pang, J.H.; Liu, X.; Wu, M.; Wu, Y.Y.; Zhang, X.M.; Sun, R.C. Fabrication and characterization of regenerated cellulose films using different ionic liquids. J. Spectrosc. 2014, 2014, 8. [Google Scholar] [CrossRef]
- Duchemin, B.J.C.; Mathew, A.P.; Oksman, K. All-cellulose composites by partial dissolution in the ionic liquid 1-butyl-3-methylimidazolium chloride. Compos. Part. A: Appl. Sci. Manuf. 2009, 40, 2031–2037. [Google Scholar] [CrossRef]
- Yang, Y.J.; Shin, J.M.; Kang, T.H.; Kimura, S.; Wada, M.; Kim, U.J. Cellulose dissolution in aqueous lithium bromide solutions. Cellulose 2014, 21, 1175–1181. [Google Scholar] [CrossRef]
- Deng, W.H.; Kennedy, J.R.; Tsilomelekis, G.; Zheng, W.Q.; Nikolakis, V. Cellulose hydrolysis in acidified libr molten salt hydrate media. Ind. Eng. Chem. Res. 2015, 54, 5226–5236. [Google Scholar] [CrossRef]
- Montero, C.; Clair, B.; Alméras, T.; Lee, A.v.d.; Gril, J. Relationship between wood elastic strain under bending and cellulose crystal strain. Compos. Sci. Technol. 2012, 72, 175–181. [Google Scholar] [CrossRef]
- Popescu, M.C.; Popescu, C.M.; Lisa, G.; Sakata, Y. Evaluation of morphological and chemical aspects of different wood species by spectroscopy and thermal methods. J. Mol. Struct. 2011, 988, 65–72. [Google Scholar] [CrossRef]
- Davidson, T.C.; Newman, R.H.; Ryan, M.J. Variations in the fibre repeat between samples of cellulose I from different sources. Carbohydr. Res. 2004, 339, 2889–2893. [Google Scholar] [CrossRef] [PubMed]
- Segal, L.; Creely, J.J.; Jr, A.E.M.; Conrad, C.M. An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Text. Res. J. 2016, 29, 786–794. [Google Scholar] [CrossRef]
- Chen, C.Y.; Chen, M.J.; Zhang, X.Q.; Liu, C.F.; Sun, R.C. Per-O-acetylation of cellulose in dimethyl sulfoxide with catalyzed transesterification. J. Agric. Food Chem. 2014, 62, 3446–3452. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.M.; Kubicki, J.D.; Fan, B.; Zhong, L.; Jarvis, M.C.; Kim, S.H. Hydrogen-bonding network and OH stretch vibration of cellulose: Comparison of computational modeling with polarized IR and SFG spectra. J. Phys. Chem. B 2015, 119, 15138–15149. [Google Scholar] [CrossRef] [PubMed]
- Maunu, S.; Liitiä, T.; Kauliomäki, S.; Hortling, B.; Sundquist, J. 13C CP/MAS NMR investigations of cellulose polymorphs in different pulps. Cellulose 2000, 7, 147–159. [Google Scholar] [CrossRef]
- Idström, A.; Schantz, S.; Sundberg, J.; Chmelka, B.F.; Gatenholm, P.; Nordstierna, L. 13C NMR assignments of regenerated cellulose from solid-state 2D NMR spectroscopy. Carbohydr. Polym. 2016, 151, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.M.; Luo, N.; Zhang, X.Y.; Xu, L.L.; Wu, J.; Yu, J.; He, J.S.; Zhang, J. All-cellulose nanocomposites reinforced with in situ retained cellulose nanocrystals during selective dissolution of cellulose in an ionic liquid. ACS Sustain. Chem. Eng. 2016, 4, 4417–4423. [Google Scholar] [CrossRef]
- French, A.D. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 2014, 21, 885–896. [Google Scholar] [CrossRef]
- Zhong, L.X.; Peng, X.W.; Yang, D.; Cao, X.F.; Sun, R.C. Long-chain anhydride modification: A new strategy for preparing xylan films. J. Agric. Food Chem. 2013, 61, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Pang, J.H.; Wu, M.; Zhang, Q.H.; Tan, X.; Xu, F.; Zhang, X.M.; Sun, R.C. Comparison of physical properties of regenerated cellulose films fabricated with different cellulose feedstocks in ionic liquid. Carbohydr. Polym. 2015, 121, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.O.; Maheswari, C.U.; Dhlamini, M.S.; Mothudi, B.M.; Zhang, J.; Zhang, J.; Nagarajan, R.; Rajulu, A.V. Preparation and characterization of regenerated cellulose films using borassus fruit fibers and an ionic liquid. Carbohydr. Polym. 2017, 160, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.P.; Zhang, X.F.; Chen, Y.W.; Duan, Y.X.; Zhang, J.M. Green fabrication of regenerated cellulose/graphene films with simultaneous improvement of strength and toughness by tailoring the nanofiber diameter. ACS Sustain. Chem. Eng. 2018, 6, 1271–1278. [Google Scholar] [CrossRef]
- Tanvir, A.; Al-Maadeed, M.A.; Hassan, M.K. Secondary chain motion and mechanical properties of irradiated regenerated cellulose films. Starch-Starke 2017, 69, 1–8. [Google Scholar] [CrossRef]
- Ding, H. Handbook of plastic industry; Chemical Industry Press: Beijing, China, 1995. [Google Scholar]
Sample | d-Spacing (nm) | Crystalline Size (nm) | ||||||
---|---|---|---|---|---|---|---|---|
10 | 110 | 200 | 004 | 10 | 110 | 200 | 004 | |
Cellulose | 0.595 | 0.534 | 0.392 | 0.258 | 7.35 | 7.84 | 8.79 | 7.47 |
60%-5 | 0.738 | 0.433 | 0.385 | 0.258 | 6.57 | 4.59 | 5.58 | 6.52 |
60%-15 | 0.725 | 0.439 | 0.411 | 0.252 | 4.80 | 4.49 | 4.94 | 4.57 |
60%-25 | 0.731 | 0.437 | 0.409 | 0.254 | 4.64 | 4.45 | 4.52 | 4.47 |
60%-35 | 0.720 | 0.435 | 0.400 | 0.252 | 3.54 | 4.28 | 3.94 | 3.79 |
62%-5 | 0.720 | 0.440 | 0.410 | 0.253 | 6.44 | 4.54 | 5.42 | 6.47 |
62%-15 | 0.725 | 0.442 | 0.406 | 0.254 | 4.69 | 4.42 | 4.85 | 4.47 |
62%-25 | 0.725 | 0.437 | 0.404 | 0.251 | 4.31 | 4.37 | 4.38 | 4.30 |
62%-35 | 0.714 | 0.440 | 0.406 | 0.250 | 3.45 | 4.20 | 3.82 | 3.75 |
65%-5 | 0.720 | 0.439 | 0.408 | 0.255 | 6.38 | 4.47 | 5.36 | 6.31 |
65%-15 | 0.708 | 0.435 | 0.406 | 0.254 | 4.60 | 4.33 | 4.67 | 4.35 |
65%-25 | 0.714 | 0.435 | 0.409 | 0.254 | 4.28 | 4.29 | 4.29 | 4.17 |
65%-35 | 0.714 | 0.435 | 0.402 | 0.251 | 3.28 | 4.12 | 3.57 | 3.37 |
Sample | Proportion of Crystalline Interior Chains (nm) | CrI | |||
---|---|---|---|---|---|
10 | 110 | 200 | 004 | (%) | |
Cellulose | 0.713 | 0.76 | 0.768 | 0.718 | 82.7 |
60%-5 | 0.683 | 0.565 | 0.628 | 0.657 | 75.8 |
60%-15 | 0.587 | 0.558 | 0.573 | 0.569 | 70.3 |
60%-25 | 0.576 | 0.554 | 0.527 | 0.548 | 63.6 |
60%-35 | 0.562 | 0.543 | 0.490 | 0.499 | 60.7 |
62%-5 | 0.671 | 0.558 | 0.613 | 0.527 | 67.9 |
62%-15 | 0.582 | 0.548 | 0.591 | 0.427 | 64.8 |
62%-25 | 0.567 | 0.540 | 0.546 | 0.408 | 62.1 |
62%-35 | 0.531 | 0.528 | 0.482 | 0.391 | 58.4 |
65%-5 | 0.628 | 0.529 | 0.599 | 0.497 | 61.3 |
65%-15 | 0.566 | 0.541 | 0.559 | 0.420 | 59.8 |
65%-25 | 0.540 | 0.538 | 0.527 | 0.399 | 55.8 |
65%-35 | 0.519 | 0.508 | 0.436 | 0.383 | 50.5 |
Sample | Tensile Strength (MPa) | Young’s Modulus (MPa) | Elongation at Break (%) |
---|---|---|---|
60%-5 | 4.19 | 343.02 | 6.68 |
60%-10 | 6.74 | 398.71 | 8.75 |
60%-15 | 25.71 | 394.33 | 7.26 |
60%-20 | 33.79 | 727.40 | 11.60 |
60%-25 | 36.80 | 568.36 | 8.86 |
60%-30 | 37.51 | 396.06 | 6.87 |
60%-35 | 15.07 | 355.28 | 7.16 |
60%-40 | 13.93 | 493.76 | 5.17 |
62%-5 | 20.93 | 720.58 | 7.31 |
62%-10 | 20.30 | 573.22 | 9.23 |
62%-15 | 41.22 | 1210.99 | 16.09 |
62%-20 | 38.32 | 897.46 | 11.57 |
62%-25 | 37.91 | 741.68 | 7.49 |
62%-30 | 52.60 | 964.86 | 7.27 |
62%-35 | 45.77 | 1277.90 | 5.71 |
62%-40 | 22.79 | 886.71 | 6.35 |
65%-5 | 20.69 | 771.60 | 9.23 |
65%-10 | 50.67 | 771.65 | 26.03 |
65%-15 | 66.80 | 1506.63 | 22.96 |
65%-20 | 57.59 | 1362.12 | 10.43 |
65%-25 | 53.75 | 835.02 | 9.97 |
65%-30 | 49.38 | 1433.00 | 5.69 |
65%-35 | 42.92 | 1403.95 | 5.58 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Xiao, N.; Wang, H.; Liu, C.; Pan, X. Preparation and Characterization of Regenerated Cellulose Film from a Solution in Lithium Bromide Molten Salt Hydrate. Polymers 2018, 10, 614. https://doi.org/10.3390/polym10060614
Zhang X, Xiao N, Wang H, Liu C, Pan X. Preparation and Characterization of Regenerated Cellulose Film from a Solution in Lithium Bromide Molten Salt Hydrate. Polymers. 2018; 10(6):614. https://doi.org/10.3390/polym10060614
Chicago/Turabian StyleZhang, Xueqin, Naiyu Xiao, Huihui Wang, Chuanfu Liu, and Xuejun Pan. 2018. "Preparation and Characterization of Regenerated Cellulose Film from a Solution in Lithium Bromide Molten Salt Hydrate" Polymers 10, no. 6: 614. https://doi.org/10.3390/polym10060614
APA StyleZhang, X., Xiao, N., Wang, H., Liu, C., & Pan, X. (2018). Preparation and Characterization of Regenerated Cellulose Film from a Solution in Lithium Bromide Molten Salt Hydrate. Polymers, 10(6), 614. https://doi.org/10.3390/polym10060614