Microstructure and Mechanical Properties of Aged and Hot Rolled AZ80 Magnesium Alloy Sheets
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. The Microstructure of the Solution Treated and Aged AZ80 Magnesium Alloy
3.2. The Microstructure, Texture Analysis of the Pre-Aged AZ80 Magnesium Alloy Sheets after Rolling
3.3. Mechanical Properties of the Pre-Aged AZ80 Magnesium Alloy Sheets after Rolling
4. Conclusions
- (1)
- The precipitates γ-Mg17Al12 progressively increased in accordance with pre-ageing time, and during rolling facilitated the newly created fine grains and sub-grains with some original grains growing, thus leading to an inhomogeneous or bimodal microstructure.
- (2)
- The larger amount of precipitates contributed to weakening the basal-type texture or occurrence of double-peak texture that favors the basal slip. The average Schmid Factor of basal plane were 0.18, 0.18, 0.228 and 0.252, respectively, according to the pre-ageing times of 75 min, 160 min, 200 min and 240 min.
- (3)
- The similar YS in the rolled AZ80 magnesium alloys pre-aged for various time indicated that the pre-ageing treatment had little effect on YS. However, the highest UTS of 363 MPa and a medium elongation of 13.3% for the alloy pre-aged for 200 min was put down to the interaction of hard second phase particles with dislocation gliding and the lowest basal-type texture intensity. The larger amount of particles and the particles decorating the grain boundaries led to initiating micro-cracks and deteriorated mechanical properties.
Author Contributions
Funding
Conflicts of Interest
References
- Guan, M.S.; Hu, Y.B.; Zheng, T.X.; Zhao, T.S.; Pan, F.S. Composition Optimization and Mechanical Properties of Mg-Al-Sn-Mn Alloys by Orthogonal Design. Materials 2018, 11, 1424. [Google Scholar] [CrossRef]
- Chen, Y.A.; Gao, J.J.; Song, Y.; Wang, Y. The influences of Sr on the microstructure and mechanical properties of Mg-5Zn-2Al alloy. Mater. Sci. Eng. A 2016, 671, 127–134. [Google Scholar] [CrossRef]
- Hu, Y.B.; Zhang, C.; Zheng, T.X.; Pan, F.S.; Tang, A.T. Strengthening Effects of Zn Addition on an Ultrahigh Ductility Mg-Gd-Zr Magnesium Alloy. Materials 2018, 11, 1942. [Google Scholar] [CrossRef]
- Hu, Y.B.; Guan, M.S.; Zheng, T.X. Microstructure, mechanical properties and yield asymmetry of Mg–4Al–2Sn–xY alloys. Mater. Sci. Technol. 2018, 34, 1131–1141. [Google Scholar] [CrossRef]
- Liu, S.J.; Yang, G.Y.; Luo, S.F.; Jie, W.Q. Microstructure and mechanical properties of sand mold cast Mg–4.58Zn–2.6Gd–0.18Zr magnesium alloy after different heat treatments. J. Alloys Compd. 2015, 644, 846–853. [Google Scholar] [CrossRef]
- Fu, W.; Wang, R.H.; Xue, H.; Kuang, J.; Zhang, J.Y.; Liu, G.; Sun, J. Effects of Zr addition on the multi-scale second-phase particles and fracture behavior for Mg-3Gd-1Zn alloy. J. Alloys Compd. 2018, 747, 197–210. [Google Scholar] [CrossRef]
- Wu, D.; Chen, R.S.; Han, E.H. Excellent room-temperature ductility and formability of rolled Mg–Gd–Zn alloy sheets. J. Alloys Compd. 2011, 509, 2856–2863. [Google Scholar] [CrossRef]
- Ding, H.L.; Zhang, P.; Cheng, G.P.; Kamado, S. Effect of calcium addition on microstructure and texture modification of Mg rolled sheets. Trans. Nonferrous Met. Soc. China 2015, 25, 2875–2883. [Google Scholar] [CrossRef]
- Hu, Y.B.; Deng, J.; Zhao, C.; Pan, F.S.; Peng, J. Microstructure and mechanical properties of Mg–Gd–Zr alloys with low gadolinium contents. J. Mater. Sci. 2011, 46, 5838–5846. [Google Scholar] [CrossRef]
- Zhang, B.P.; Wang, Y.; Geng, L.; Lu, C.X. Effects of calcium on texture and mechanical properties of hot-extruded Mg–Zn–Ca alloys. Mater. Sci. Eng. A 2012, 539, 56–60. [Google Scholar] [CrossRef]
- Zhang, B.P.; Geng, L.; Huang, L.J.; Zhang, X.X.; Dong, C.C. Enhanced mechanical properties in fine-grained Mg–1.0Zn–0.5Ca alloys prepared by extrusion at different temperatures. Scripta Mater. 2010, 63, 1024–1027. [Google Scholar] [CrossRef]
- Yan, H.; Chen, R.S.; Han, E.H. Room-temperature ductility and anisotropy of two rolled Mg–Zn–Gd alloys. Mater. Sci. Eng. A 2010, 527, 3317–3322. [Google Scholar] [CrossRef]
- Geng, L.; Zhang, B.P.; Li, A.B.; Dong, C.C. Microstructure and mechanical properties of Mg–4.0Zn–0.5Ca alloy. Mater. Lett. 2009, 63, 557–559. [Google Scholar] [CrossRef]
- Zheng, T.X.; Hu, Y.B.; Zhang, Y.X.; Pan, F.S. Formation of a hydrophobic and corrosion resistant coating on magnesium alloy via a one-step hydrothermal method. J. Colloid Interface Sci. 2017, 505, 87–95. [Google Scholar] [CrossRef]
- Zheng, T.X.; Hu, Y.B.; Yang, S.W. Effect of grain size on the electrochemical behavior of pure magnesium anode. J. Magnesium Alloys 2017, 5, 404–411. [Google Scholar] [CrossRef]
- Zheng, T.X.; Hu, Y.B.; Zhang, Y.X.; Yang, S.W.; Pan, F.S. Composition optimization and electrochemical properties of Mg-Al-Sn-Mn alloy anode for Mg-air batteries. Mater. Des. 2018, 137, 245–255. [Google Scholar] [CrossRef]
- Wang, C.P.; Xin, R.L.; Li, D.R.; Song, B.; Wu, M.Y.; Liu, Q. Enhancing the age-hardening response of rolled AZ80 alloy by pre-twinning deformation. Mater. Sci. Eng. A 2017, 680, 152–156. [Google Scholar] [CrossRef]
- Celotto, S.; Bastow, T.J. Study of precipitation in aged binary Mg–Al and ternary Mg–Al–Zn alloys using 27Al NMR spectroscopy. Acta Mater. 2001, 49, 41–51. [Google Scholar] [CrossRef]
- Duly, D.; Simon, J.P.; Brechet, Y. On the competition between continuous and discontinuous precipitations in binary Mg-Al alloys. Acta Metall. Mater. 1995, 43, 101–106. [Google Scholar]
- Lai, W.J.; Li, Y.Y.; Hsu, Y.F.; Trong, S.; Wang, W.H. Aging behaviour and precipitate morphologies in Mg–7.7Al–0.5Zn–0.3Mn (wt %) alloy. J. Alloys Compd. 2009, 476, 118–124. [Google Scholar] [CrossRef]
- Braszczyńska-Malik, K.N. Discontinuous and continuous precipitation in magnesium–aluminium type alloys. J. Alloys Compd. 2009, 477, 870–876. [Google Scholar] [CrossRef]
- Yu, S.L.; Gao, Y.H.; Liu, C.M.; Han, X.Z. Effect of aging temperature on precipitation behavior and mechanical properties of extruded AZ80-Ag alloy. J. Alloys Compd. 2015, 646, 431–436. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.M.; Xue, Y. Influence of aging on microstructure and mechanical properties of AZ80 and ZK60 magnesium alloys. Trans. Nonferrous Met. Soc. China 2011, 21, 739–744. [Google Scholar] [CrossRef]
- Xu, S.W.; Matsumoto, N.; Kamado, S.; Honma, T.; Kojima, Y. Effect of pre-aging treatment on microstructure and mechanical properties of hot compressed Mg–9Al–1Zn alloy. Mater. Sci. Eng. A 2009, 517, 354–360. [Google Scholar] [CrossRef]
- Wang, C.J.; Deng, K.K.; Nie, K.B.; Shang, S.J.; Liang, W. Competition behavior of the strengthening effects in as-extruded AZ91 matrix: Influence of pre-existed Mg 17 Al 12 phase. Mater. Sci. Eng. A 2016, 656, 102–110. [Google Scholar] [CrossRef]
- Li, X.; Jiao, F.; Al-Samman, T.; Ghosh Chowdhury, S. Influence of second-phase precipitates on the texture evolution of Mg–Al–Zn alloys during hot deformation. Scripta Mater. 2012, 66, 159–162. [Google Scholar] [CrossRef]
- Lv, C.L.; Liu, T.M.; Liu, D.J.; Jiang, S.; Zeng, W. Effect of heat treatment on tension–compression yield asymmetry of AZ80 magnesium alloy. Mater. Des. 2012, 33, 529–533. [Google Scholar] [CrossRef]
- Zhao, D.G.; Wang, Z.Q.; Zuo, M.; Geng, H.R. Effects of heat treatment on microstructure and mechanical properties of extruded AZ80 magnesium alloy. Mater. Des. 2014, 56, 589–593. [Google Scholar] [CrossRef]
- Zhou, X.J.; Zhang, J.; Chen, X.M.; Zhang, X.; Li, M.J. Fabrication of high-strength AZ80 alloys via multidirectional forging in air with no need of ageing treatment. J. Alloys Compd. 2019, 787, 551–559. [Google Scholar] [CrossRef]
- Jiang, Q.T.; Ma, X.M.; Zhang, K.; Li, Y.T.; Li, X.G.; Li, Y.J.; Ma, M.L.; Hou, B.R. Anisotropy of the crystallographic orientation and corrosion performance of high-strength AZ80 Mg alloy. J. Magnesium Alloys 2015, 3, 309–314. [Google Scholar] [CrossRef]
- Huang, X.S.; Suzuki, K.; Saito, N. Microstructure and mechanical properties of AZ80 magnesium alloy sheet processed by differential speed rolling. Mater. Sci. Eng. A 2009, 508, 226–233. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, D.F.; Tang, T.; Yu, D.L.; Xu, J.Y.; Pan, F.S. Effect of Aging Treatment before Extrusion on Microstructure and Mechanical Properties of AZ80 Magnesium Alloy. Rare Metal Mat Eng. 2017, 46, 1768–1774. [Google Scholar]
- Zindal, A.; Jain, J.; Prasad, R.; Singh, S.S.; Sarvesha, R.; Cizek, P.; Barnett, M.R. Effect of heat treatment variables on the formation of precipitate free zones (PFZs) in Mg-8Al-0.5Zn alloy. Mater. Charact. 2018, 136, 175–182. [Google Scholar] [CrossRef]
- Jiang, L.Y.; Zhang, D.F.; Fan, X.W.; Guo, F.; Hu, G.S.; Xue, H.S.; Pan, F.S. The effect of Sn addition on aging behavior and mechanical properties of wrought AZ80 magnesium alloy. J. Alloys Compd. 2015, 620, 368–375. [Google Scholar] [CrossRef]
- Clark, J.B. Age hardening in a Mg-9 wt % Al alloy. Acta Metall. 1968, 16, 141–152. [Google Scholar] [CrossRef]
- Clark, J.B. Transmission Electron Microscopy Study of Age Hardening in a Mg-5 wt % Zn Alloy. Acta Metall. 1965, 13, 1281–1289. [Google Scholar] [CrossRef]
- Al-Samman, T. Modification of texture and microstructure of magnesium alloy extrusions by particle-stimulated recrystallization. Mater. Sci. Eng. A 2013, 560, 561–566. [Google Scholar] [CrossRef]
- Hu, Y.B.; Zhang, C.; Meng, W.Q.; Pan, F.S.; Zhou, J.P. Microstructure, mechanical and corrosion properties of Mg-4Al-2Sn-xY-0.4Mn alloys. J. Alloys Compd. 2017, 727, 491–500. [Google Scholar] [CrossRef]
- Yu, Z.W.; Tang, A.T.; He, J.J.; Gao, Z.Y.; She, J.; Liu, J.G.; Pan, F.S. Effect of high content of manganese on microstructure, texture and mechanical properties of magnesium alloy. Mater. Charact. 2018, 136, 310–317. [Google Scholar] [CrossRef]
- Zengin, H.; Turen, Y. Effect of La content and extrusion temperature on microstructure, texture and mechanical properties of Mg-Zn-Zr magnesium alloy. Mater. Chem. Phys. 2018, 214, 421–430. [Google Scholar] [CrossRef]
- Borkar, H.; Hoseini, M.; Pekguleryuz, M. Effect of strontium on the texture and mechanical properties of extruded Mg–1% Mn alloys. Mater. Sci. Eng. A 2012, 549, 168–175. [Google Scholar] [CrossRef]
- Styczynski, A.; Hartig, C.; Bohlen, J.; Letzig, D. Cold rolling textures in AZ31 wrought magnesium alloy. Scripta Mater. 2004, 50, 943–947. [Google Scholar] [CrossRef]
- Lugo, M.; Tschopp, M.A.; Jordon, J.B.; Horstemeyer, M.F. Microstructure and damage evolution during tensile loading in a wrought magnesium alloy. Scripta Mater. 2011, 64, 912–915. [Google Scholar] [CrossRef]
- Geng, J.; Nie, J.F. Microstructure and mechanical properties of extruded Mg–1Ca–1Zn–0.6Zr alloy. Mater. Sci. Eng. A 2016, 653, 27–34. [Google Scholar] [CrossRef]
- Kondori, B.; Benzerga, A.A. Modeling damage accumulation to fracture in a magnesium-rare earth alloy. Acta Mater. 2017, 124, 225–236. [Google Scholar] [CrossRef]
Pre-Ageing Time | Yield Strength (MPa) | Ultimate Tensile Strength (MPa) | Elongation (%) |
---|---|---|---|
75 min | 274 | 330 | 5.1 |
160 min | 276 | 350 | 9.8 |
200 min | 281 | 363 | 13.3 |
240 min | 273 | 332 | 5.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, B.; Hu, Y.; Zhao, T.; Yao, Q.; Pan, F. Microstructure and Mechanical Properties of Aged and Hot Rolled AZ80 Magnesium Alloy Sheets. Crystals 2019, 9, 239. https://doi.org/10.3390/cryst9050239
He B, Hu Y, Zhao T, Yao Q, Pan F. Microstructure and Mechanical Properties of Aged and Hot Rolled AZ80 Magnesium Alloy Sheets. Crystals. 2019; 9(5):239. https://doi.org/10.3390/cryst9050239
Chicago/Turabian StyleHe, Bing, Yaobo Hu, Tianshuo Zhao, Qingshan Yao, and Fusheng Pan. 2019. "Microstructure and Mechanical Properties of Aged and Hot Rolled AZ80 Magnesium Alloy Sheets" Crystals 9, no. 5: 239. https://doi.org/10.3390/cryst9050239
APA StyleHe, B., Hu, Y., Zhao, T., Yao, Q., & Pan, F. (2019). Microstructure and Mechanical Properties of Aged and Hot Rolled AZ80 Magnesium Alloy Sheets. Crystals, 9(5), 239. https://doi.org/10.3390/cryst9050239