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Abstract: This study focused on the effects of ageing for various time at 175 ◦C before hot rolling on
microstructure and mechanical properties of AZ80 magnesium alloys. The amount of γ-Mg17Al12

increased in line with ageing time and during the rolling process could facilitate the fine grains
and sub-grains, which resulted in an inhomogeneous or bimodal microstructure, and weakening
basal-type texture intensity or occurrence of double-peak texture. However, a larger quantity of
γ-Mg17Al12 distributed on the matrix in the alloy aged for 240 min, or the precipitates decorating the
grain boundaries in the alloy aged for 75 min, were detrimental to the mechanical properties, and
lower ultimate tensile strength with elongation were obtained in the two alloys as a result. When the
alloy was aged for 200 min, it showed an optimum mechanical property with its yield strength of
281 MPa, ultimate tensile strength of 363 MPa and a medium elongation of 13.3%, which was mainly
attributed to the interaction of the hard second phase particles with dislocation movement and the
lowest basal-type texture intensity that favored the basal slip.
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1. Introduction

Thanks to low density, good castability, high specific strength, stiffness and recyclability,
magnesium alloys have widely aroused great interests in transportation, aerospace and military
fields, and are deemed to be promising structural metallic materials that one day could substitute
their counterparts like aluminum, titanium, and steel [1–4]. Unfortunately, the intrinsic hexagonal
close-packed (hcp) structure makes Mg alloys hard to deform at ambient temperature and high chemical
activity makes Mg alloys easily corrode, resulting in the limitation of wide application in industry;
therefore, considerable efforts have been devoted to improve the properties of Mg alloys [5–16].

Among the commercial Mg alloys, AZ80 alloys are often focused on because of their simple
smelting process, good corrosion resistance and cheap price comparable to WE43 alloys. They
have higher Al content which helps harden the alloys via solution or precipitation strengthening.
Continuous precipitates and discontinuous precipitates, which have the same chemical composition
but distinguished morphology and precipitation behavior, are the two major strengthening phases in
Mg–Al series alloys [17–21]. It has been reported that discontinuous precipitates could take effect in
enhancing strength, while continuous precipitates, which would be coarsened faster at higher ageing
temperature, could not in effect strengthen alloys [20,22]. Furthermore, the strength and ductility in
Mg alloys are in a trade-off relationship and the discontinuous precipitates in AZ80 magnesium alloys
are prone to resulting in dislocation accumulation and thus initiating micro-cracks [23]. Fortunately,
Xu et al. [24] reported that the age-compressed AZ91 alloy achieved higher ultimate tensile strength and
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ductility than the cast-compressed one did. Wang et al. [25] and Li et al. [26] demonstrated that a weak
basal texture came out by second phase particles. Inspired by the research aforementioned, in this
paper we investigated the influence various quantities of γ-Mg17Al12 have on AZ80 magnesium alloy
sheets according to various ageing time during rolling. The alternation of microstructure basal-type
texture with a strengthening mechanism was also discussed, in the hope that our research could shed
some light on producing Mg alloys with higher strength and ductility.

2. Materials and Methods

The raw material was commercial AZ80 magnesium ingot with its nominal composition of
Mg–8.20Al–0.36Zn–0.40Mn (all in wt %). Four billets were cut from the ingot at a diameter of 80 mm
and those billets were solution heat treated at 420 ◦C for 20 h in an electric resistance furnace, followed
by water quenching at ambient temperature. Having been kept at 420 ◦C for 2 h, those billets were
extruded at 420 ◦C under an extrusion ratio of 28 and thus the extruded sheets of 60 mm × 3 mm
were made. The extruded sheets were sawn into several pieces and four were selected to be aged at
175 ◦C for 75 min, 160 min, 200 min and 240 min, respectively. After being held at 350 ◦C for 30 min,
the four sheets were then rolled along the extrusion direction (ED) at 350 ◦C for 5 passes, between
which the sheets were annealed for 10 min at the same temperature, with a total thickness reduction of
30%. Water-quenching followed the final rolling pass immediately and the rolling microstructures
were preserved.

The bulk specimens with the dimension of 8 mm × 6 mm × 2 mm were cut from each rolled sheet,
ground on SiC grit papers and then etched in acetic picric solution (1.5 g picric acid, 16 ml ethanol,
3ml acetic acid and 5 ml distill water). The microstructure of the specimens was observed using light
microscope (LM, OLYMPUS, OLS4000, Tokyo, Japan) and scanning electron microscope (SEM, JOEL,
JSM-7800F, JEOL. Ltd., Tokyo, Japan). Electron backscattered diffraction (EBSD) analysis was carried
out to describe the grain orientation using SEM (FEI Nova 400 SEM, Oregon, OR, USA) equipped with
EBSD detector (EBSD, Oxford Instruments NordlysMax2 EBSD detector, Oxford, UK). The specimens
for EBSD analysis were mechanically ground and electrochemical polished in commercial AC II
solution. The macro-texture of specimens was characterized using X-ray diffraction (XRD) technique
(XRD, D/max-1200, Rigaku, Tokyo, Japan). Thin foil for observing the dislocation under transmission
electron microscopy (TEM, ZEISS LIBRA 200FE, Oberkochen, Germany) was prepared using twin jet
electro-polishing. Three tensile specimens with the gauge length of 35 mm and width of 6 mm for
different pre-ageing time were tested at room temperature along the rolling direction (RD) at a constant
strain of 2 × 10−3 s−1 using testing machine (SHIMADZU AG-X, Kyoto, Japan).

3. Results and Discussion

3.1. The Microstructure of the Solution Treated and Aged AZ80 Magnesium Alloy

The microstructure of cast AZ80 alloy consists of α-Mg and γ-Mg17Al12 distributed along the
grain boundary. A suitable heat treatment is necessary to control the morphology and distribution of
second phase. It is reported that the heat treatment has impact on the microstructure of AZ80 alloy
and a single phase solid solution can be acquired when temperature exceeds 400 ◦C [27–29]. Therefore,
it is reasonable to speculate the γ-Mg17Al12 was completely dissolved into the matrix in the AZ80
alloy we prepared here. After extrusion, the fully dynamic recrystallization (DRx) appeared and the
refined equiaxed grain was achieved with the average grain size of about 7.7 µm using linear intercept
method (Figure 1). The macro-texture was intense, with an intensity of 10.03 mrd, and showed a strong
basal-type texture that the basal plane (0002) of majority of grains were aligned parallel to ED, which
was in good agreement in AZ series magnesium alloys in spite of extrusion or rolling [17,30,31].
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Figure 1. The microstructure (LM) and texture of AZ80 alloy: (a) As-extruded; (b) the (0002) and (10-
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The morphology of the extruded AZ80 alloy aged at 175 °C for 160 min is depicted in Figure 2. 
The precipitates herein are lamellar structures and are embedded into the adjacent grain, which is 
the typical characteristic of discontinuous precipitation. The precipitation behavior of AZ80 
magnesium alloy is intimately related to the ageing temperature, which results in discontinuous 
precipitation and continuous precipitation respectively when ageing temperature is below 250 °C 
and above 310 °C [32]. Convincingly, the discontinuous precipitation herein played the leading role 
and the precipitates preferentially nucleated at grain boundaries that had higher energy and defects 
than within the grains. Additionally, the hardness increased alongside the increment of aging time at 
lower ageing temperature [22,28,33,34], and the AZ80 alloy here therefore was under-aged, wherein 
the quantities of precipitates gradually increased in accordance with ageing time. 
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3.2. The Microstructure, Texture Analysis of the Pre-Aged AZ80 Magnesium Alloy Sheets after Rolling 

Both Figure 3 and Figure 4 present the microstructure of the aged AZ80 alloy subjected to rolling, 
which was different from the primitive microstructure. After the final pass rolling the AZ80 rolled 
sheets were quenched into water; due to the fast cooling, the DRx did not completely occur and the 
rolling microstructures were preserved. The grains of the rolled AZ80 magnesium alloys were 
comprised of coarse grains and fine grains, and inhomogeneous or bimodal microstructure came out. 
On one hand, the force imposed during the rolling process could have broken the discontinuous 
precipitates γ-Mg17Al12 into small particles that were evenly distributed among the matrix; these 
particles could not in effect impede the growth of grains at rolling temperature of ~350 °C but could 
contribute to the nucleation of fine dynamically recrystallized grains, especially sited near grain 
boundaries. On the other hand, the twinning and dislocations could be working in conjunction 
during rolling and led to high dislocation density zone near grain boundaries, facilitating the 
occurrence of fine grains and sub-grains.  

Interestingly, it is worth noting that the twinning was barely seen in the rolled AZ80 pre-aged 
for 240 min, but the twinning prevailed in the rolled AZ80 alloy pre-aged for 75 min. It was obviously 

seen that the misorientation angle of 86.3°, which the {101
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Figure 1. The microstructure (LM) and texture of AZ80 alloy: (a) As-extruded; (b) the (0002) and (10-10)
pole figures.

The morphology of the extruded AZ80 alloy aged at 175 ◦C for 160 min is depicted in Figure 2.
The precipitates herein are lamellar structures and are embedded into the adjacent grain, which is the
typical characteristic of discontinuous precipitation. The precipitation behavior of AZ80 magnesium
alloy is intimately related to the ageing temperature, which results in discontinuous precipitation and
continuous precipitation respectively when ageing temperature is below 250 ◦C and above 310 ◦C [32].
Convincingly, the discontinuous precipitation herein played the leading role and the precipitates
preferentially nucleated at grain boundaries that had higher energy and defects than within the
grains. Additionally, the hardness increased alongside the increment of aging time at lower ageing
temperature [22,28,33,34], and the AZ80 alloy here therefore was under-aged, wherein the quantities
of precipitates gradually increased in accordance with ageing time.
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Figure 2. The microstructure (LM) of the extruded AZ80 alloy aged for 160 min.

3.2. The Microstructure, Texture Analysis of the Pre-Aged AZ80 Magnesium Alloy Sheets after Rolling

Both Figures 3 and 4 present the microstructure of the aged AZ80 alloy subjected to rolling, which
was different from the primitive microstructure. After the final pass rolling the AZ80 rolled sheets
were quenched into water; due to the fast cooling, the DRx did not completely occur and the rolling
microstructures were preserved. The grains of the rolled AZ80 magnesium alloys were comprised
of coarse grains and fine grains, and inhomogeneous or bimodal microstructure came out. On one
hand, the force imposed during the rolling process could have broken the discontinuous precipitates
γ-Mg17Al12 into small particles that were evenly distributed among the matrix; these particles could
not in effect impede the growth of grains at rolling temperature of ~350 ◦C but could contribute
to the nucleation of fine dynamically recrystallized grains, especially sited near grain boundaries.
On the other hand, the twinning and dislocations could be working in conjunction during rolling and
led to high dislocation density zone near grain boundaries, facilitating the occurrence of fine grains
and sub-grains.
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Figure 4. SEM images of the rolled AZ80 alloys pre-aged for (a) 75 and (b) 240 min.

Interestingly, it is worth noting that the twinning was barely seen in the rolled AZ80 pre-aged for
240 min, but the twinning prevailed in the rolled AZ80 alloy pre-aged for 75 min. It was obviously
seen that the misorientation angle of 86.3◦, which the {1012} twinning had the c-axis of grain rotate
around <1010>, progressively decreased (Figure 5). It can be therefore concluded that the quantities of
precipitates had an effect in twinning and the increasing amounts can effectively suppress the {1012}
tensile twinning, which is in good agreement with the findings that Lv et al. [27] and Clark et al. [35,36]
have reported. Nevertheless, the suppression of tensile twinning via precipitates is not clear and a lot
of efforts are necessary to figure out why.

Previously, some literatures have reported that the second phase particles with a large diameter
above 1 µm are able to promote the DRx and the newly created grain has a random texture facilitating
randomizing the strong basal texture, thus favoring secondary forming [37–41]. It is not surprising that
the basal-type texture intensities were in a progressive decreasing trend in the rolled AZ80 magnesium
alloys pre-aged for 75 min, 160 min, 200 min, but to our surprise, the basal-type texture intensity of the
rolled AZ80 magnesium alloys pre-aged for 240 min sharply increased compared to the rolled AZ80
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magnesium alloys pre-aged for 200 min (Figure 6). However, it is obvious to see that there existed
a double-peak texture towards RD only in the rolled AZ80 magnesium alloys pre-aged for 240 min, and
the occurrence of this texture was related with special slip activation modes. Based on the Taylor model
of polycrystal deformation and experimental results, the pyramidal slip <c + a> was responsible for
double-peak texture in Ref. [42]. According to Figure 7, the average Schmid Factor of the rolled AZ80
magnesium alloy pre-aged for 75 min, 160 min, 200 min and 240 min were respectively calculated to
be 0.18, 0.18, 0.228 and 0.252, which were in an increasing trend. It is universally acknowledged that
the weakening basal textured or double-peak textured magnesium alloys commonly possess good
ductility or formability, for under these conditions the basal plane slips are favored to operate. Hence,
it is understandable that the rolled AZ80 magnesium alloys pre-aged for 200 min and 240 min had
larger Schmid Factor compared to other alloys.
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Figure 7. The (0002) basal plane slip Schmid Factor distribution microgram (a–d) and corresponding
Schmid Factor distribution histogram (e–h): (a,e) pre-aged for 75 min; (b,f) pre-aged for 160 min;
(c,g) pre-aged for 200 min and (d,h) pre-aged for 240 min.

3.3. Mechanical Properties of the Pre-Aged AZ80 Magnesium Alloy Sheets after Rolling

The mechanical properties of the rolled AZ80 magnesium alloys pre-aged for 75 min, 160 min, 200
min and 240 min are presented in Figure 8 and Table 1. It was observed that the yield strength (YS)
was similar but the ultimate tensile strength (UTS) and elongation were various, meaning the various
content of precipitates for various pre-ageing time had little effect on yield strength but had an effect
on the ultimate tensile strength and elongation. In particular, when pre-aged for 200 min, the rolled
AZ80 magnesium alloy obtained the higher strength with elongation amongst the pre-aged AZ80
alloys. Furthermore, the UTS and elongation increased from the pre-ageing time of 75 min to 200 min
but dropped when the pre-ageing time was 240 min. The interaction of the second phase particles
and the dislocation movement in the rolled AZ80 alloy is presented here in Figure 9. Obviously,
the dislocation could move forward bypassing the hard second phase particles, the dispersoid took
effect in retarding the dislocation movement, and the Orowan loop was left, which thus improved the
strength. The content of γ-Mg17Al12 was progressively precipitated during the ageing treatment so
that it was reasonable to deduce that the strength would be increasingly increasing. On the contrary,
the 240 min pre-aged alloy obtained lower strength and ductility than the 200 min pre-aged alloy
did. Lugo et al. and Geng and Nie [43,44] point out that the large second phase particles are prone
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to initiating micro-cracks that are detrimental to the mechanical properties of alloys, and so do the
particles that decorate the grain boundaries [45]. Hence, the larger amount of second phase particles
dominated the fracture mechanism and led to rapture in the early stage of uniaxial tension, resulting
in the lower strength and ductility for the 240 min pre-aged AZ80 alloy. It can also be seen that the
particles predominantly decorated the grain boundaries in the 75 min pre-aged AZ80 alloy (Figure 4a),
in which case the micro-cracks were inclined to initiate, and similarly, lower strength and ductility were
achieved. In the 200 min pre-aged AZ80 alloy, the highest UTS would be ascribed to the interaction of
the hard second phase particles with dislocation and a medium elongation to the weakening basal
texture and the operative basal slip.
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4. Conclusions

The pre-ageing treatment before hot rolling was carried out in the extruded AZ80 magnesium
alloys and the microstructure and mechanical properties were characterized. The conclusions are here
as follows:

(1) The precipitates γ-Mg17Al12 progressively increased in accordance with pre-ageing time, and
during rolling facilitated the newly created fine grains and sub-grains with some original grains
growing, thus leading to an inhomogeneous or bimodal microstructure.

(2) The larger amount of precipitates contributed to weakening the basal-type texture or occurrence
of double-peak texture that favors the basal slip. The average Schmid Factor of basal plane were
0.18, 0.18, 0.228 and 0.252, respectively, according to the pre-ageing times of 75 min, 160 min,
200 min and 240 min.

(3) The similar YS in the rolled AZ80 magnesium alloys pre-aged for various time indicated that the
pre-ageing treatment had little effect on YS. However, the highest UTS of 363 MPa and a medium
elongation of 13.3% for the alloy pre-aged for 200 min was put down to the interaction of hard
second phase particles with dislocation gliding and the lowest basal-type texture intensity. The
larger amount of particles and the particles decorating the grain boundaries led to initiating
micro-cracks and deteriorated mechanical properties.
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