# Analytic Solutions to Two-Dimensional Decagonal Quasicrystals with Defects Using Complex Potential Theory

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Governing Equations of Elasticity of Decagonal Quasicrystals

## 3. An Arc of Elliptic Notch Inner Surface in a Decagonal Quasicrystal

## 4. Solutions to a Decagonal Quasicrystalline Strip Containing a Centric Crack

## 5. Conclusions and Discussion

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Shechtman, D.; Blech, I.; Gratias, D.; Cahn, J.W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett.
**1984**, 53, 1951–1953. [Google Scholar] - Bak, P. Phenomenological theory of icosahedral in commensurate (quasiperiodic) order in Mn-Al alloys. Phys. Rev. Lett.
**1985**, 54, 1517–1519. [Google Scholar] - Socolar, J.E.S.; Lubensky, T.C.; Steinhardt, P.J. Phonons, phasons and dislocations in quasicrystals. Phys. Rev. B
**1986**, 34, 3345–3360. [Google Scholar] - Edagawa, K. Phonon-phason coupling in decagonal quasicrystals. Philos. Mag.
**2007**, 87, 2789–2798. [Google Scholar] - Cheminkov, M.A.; Ott, H.R.; Bianchi, A.; Migliori, A.; Darling, T.W. Elastic moduli of a single quasicrystal of decagonal Al-Ni-Co: Evidence for transverse elastic isotropy. Phys. Rev. Lett.
**1998**, 80, 321–324. [Google Scholar] - Tanaka, K.; Mitarai, Y.; Koiwa, M. Elastic constants of Al-based icosahedral quasicrystals. Philos. Mag. A
**1996**, 73, 1715–1723. [Google Scholar] - Ding, D.H.; Yang, W.G.; Hu, C.Z. Generalized elasticity theory of quasicrystals. Phys. Rev. B
**1993**, 48, 7003–7010. [Google Scholar] - Hu, C.Z.; Wang, R.H.; Ding, D.H. Symmetry groups, physical property tensors, elasticity and dislocations in quasicrystals. Rep. Prog. Phys.
**2000**, 63, 1–39. [Google Scholar] - Jeong, H.C.; Steinhardt, P.J. Finite-temperature elasticity phase transition in decagonal quasicrystals. Phys. Rev. B
**1993**, 48, 9394–9403. [Google Scholar][Green Version] - Fan, T.Y. Mathematical Theory of Elasticity of Quasicrystals and Its Applications; Springer: Heideberg, Germany, 2010. [Google Scholar]
- Radi, E.; Mariano, P.M. Stationary straight cracks in quasicrystals. Int. J. Fract.
**2010**, 166, 102–120. [Google Scholar] - Radi, E.; Mariano, P.M. Steady-state propagation of dislocations in quasi-crystals. Proc. R. Soc. A Math. Phys.
**2011**, 467, 3490–3508. [Google Scholar][Green Version] - Mariano, P.M.; Planas, J. Phason self-actions in quasicrystals. Physica D
**2013**, 249, 24946–24957. [Google Scholar] - Wang, J.B.; Mancini, L.; Wang, R.H.; Gastaldi, J. Phonon- and phason-type spherical inclusions in icosahedral quasicrystals. J. Phys. Condens. Matter
**2003**, 15, L363–L370. [Google Scholar] - Li, X.F.; Duan, X.Y.; Fan, T.Y. Elastic field for a straight dislocation in a decagonal quasicrystal. J. Phys. Condens. Matter
**1999**, 11, 703–711. [Google Scholar] - Li, X.F.; Fan, T.Y.; Sun, Y.F. A decagonal quasicrystal with a Griffith crack. Philos. Mag. A
**1999**, 79, 1943–1952. [Google Scholar] - Gao, Y.; Ricoeur, A. The refined theory of one-dimensional quasi-crystals in thick plate structures. J. Appl. Mech.
**2011**, 78, 031021. [Google Scholar] - Li, L.H.; Fan, T.Y. Complex function method for solving notch problem of point 10 two-dimensional quasicrystal based on the stress potential function. J. Phys. Condens. Matter
**2006**, 18, 10631–10641. [Google Scholar] - Li, X.Y. Fundamental solutions of penny-shaped and half infinite plane cracks embedded in an infinite space of one dimensional hexagonal quasi-crystal under thermal loading. Proc. R. Soc. A Math. Phys.
**2013**, 469, 20130023. [Google Scholar] - Li, X.Y. Elastic field in an infinite medium of one-dimensional hexagonal quasicrystal with a planar crack. Int. J. Solids Struct.
**2014**, 51, 1442–1455. [Google Scholar][Green Version] - Wollgarten, M.; Beyss, M.; Urban, K.; Liebertz, H.; Koster, U. Direct evidence for plastic deformation of quasicrystals by means of a dislocationmechanism. Phys. Rev. Lett.
**1993**, 71, 549–552. [Google Scholar] - Feuerbacher, M.; Bartsch, M.; Grushko, B.; Messerschmidt, U.; Urban, K. Plastic deformation of decagonal Al-Ni-Co quasicrystals. Philos. Mag. Lett.
**1997**, 76, 369–376. [Google Scholar][Green Version] - Messerschmidt, U.; Bartsch, M.; Feuerbacher, M.; Geyer, B.; Urban, K. Friction mechanism of dislocation motion in icosahedralAl-Pd-Mn quasicrystals. Philos. Mag. A
**1999**, 79, 2123–2135. [Google Scholar] - Schall, P.; Feuerbacher, M.; Bartsch, M.; Messerschmidt, U.; Urban, K. Dislocation density evolution upon plastic deformation of Al-Pd-Mn single quasicrystals. Philos. Mag. Lett.
**1999**, 79, 785–796. [Google Scholar] - Geyer, B.; Bartsch, M.; Feuerbacher, M.; Urban, K.; Messerschmidt, U. Plastic deformation of icosahedral Al-Pd-Mn single quasicrystals I. Experimental results. Philos. Mag. A
**2000**, 80, 1151–1163. [Google Scholar] - Rosenfeld, R.; Feuerbacher, M. Study of plastically deformed icosahedral Al-Pd-Mn single quasicrystals by transmission electron microscopy. Philos. Mag. Lett.
**1995**, 72, 375–784. [Google Scholar] - Caillard, D.; Vanderschaeve, G.; Bresson, L.; Gratias, D. Transmission electron microscopy study of dislocations and extended defects in as-grown icosahedral Al-Pd-Mn single grains. Philos. Mag. A
**2000**, 80, 237–253. [Google Scholar] - Muskhelishvili, N.I. Some Basic Problems of Mathematical Theory of Elasticity; Noordhoff: Groningen, The Netherlands, 1963. [Google Scholar]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Cao, H.; Shi, Y.; Li, W.
Analytic Solutions to Two-Dimensional Decagonal Quasicrystals with Defects Using Complex Potential Theory. *Crystals* **2019**, *9*, 209.
https://doi.org/10.3390/cryst9040209

**AMA Style**

Cao H, Shi Y, Li W.
Analytic Solutions to Two-Dimensional Decagonal Quasicrystals with Defects Using Complex Potential Theory. *Crystals*. 2019; 9(4):209.
https://doi.org/10.3390/cryst9040209

**Chicago/Turabian Style**

Cao, Haobai, Yiqing Shi, and Wu Li.
2019. "Analytic Solutions to Two-Dimensional Decagonal Quasicrystals with Defects Using Complex Potential Theory" *Crystals* 9, no. 4: 209.
https://doi.org/10.3390/cryst9040209