Shape-Dependent Aggregation of Silver Particles by Molecular Dynamics Simulation
Abstract
:1. Introduction
2. Computational Models and Methods
2.1. Building Blocks
2.2. Simulation Methods
2.2.1. Potentials
2.2.2. Calculation Methods for the Surface Energy
2.2.3. Simulation Methods for the Aggregation Process
2.2.4. Calculation Methods for the Aggregation Mode
- Calculated the distance between any two atoms which belonged to different building blocks. Once their distance was less than the critical distance 2.9 Å, which was set according to the nearest distance of silver crystal atom stacking 2.889 Å, the atom pair was considered to be in contact.
- If there were at least three atom pairs complying with the above distance criteria, two building blocks were aggregated, and then the aggregation mode could be determined. For example, the aggregation mode could be categorized as (111)–(111) or (100)–(100) if the atom pairs both belonged to the (111) group or (100) group. When one atom of the pair originated from the (111) group and the other one from the (100) group, the aggregation mode was defined as (111)–(100).
- After all atom pairs were counted, the proportion of a specific aggregation mode was calculated.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sushkevich, V.L.; Ivanova, I.I. Mechanistic study of ethanol conversion into butadiene over silver promoted zirconia catalysts. Appl. Catal. B 2017, 215, 36–49. [Google Scholar] [CrossRef]
- Baruah, B.; Gabriel, G.J.; Akbashev, M.J.; Booher, M.E. Facile synthesis of silver nanoparticles stabilized by cationic polynorbornenes and their catalytic activity in 4-nitrophenol reduction. Langmuir 2013, 29, 4225–4234. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Peng, Y.; Lombardi, J.R.; Cui, X.; Zheng, W. Photochemical growth of silver nanoparticles with mixed-light irradiation. Colloid Polym. Sci. 2016, 294, 911–916. [Google Scholar] [CrossRef]
- Yang, T.; Han, Y.; Li, J. Manipulating silver dendritic structures via diffusion and reaction. Chem. Eng. Sci. 2015, 138, 457–464. [Google Scholar] [CrossRef]
- Kim, D.H.; Park, J.C.; Jeon, G.E.; Kim, C.S.; Seo, J.H. Effect of the size and shape of silver nanoparticles on bacterial growth and metabolism by monitoring optical density and fluorescence intensity. Biotechnol. Bioprocess Eng. 2017, 22, 210–217. [Google Scholar] [CrossRef]
- Fang, J.; You, H.; Kong, P.; Yi, Y.; Song, X.; Ding, B. Dendritic Silver Nanostructure Growth and Evolution in Replacement Reaction. Cryst. Growth Des. 2007, 7, 864–867. [Google Scholar] [CrossRef]
- Mandke, M.V.; Han, S.-H.; Pathan, H.M. Growth of silver dendritic nanostructuresvia electrochemical route. CrystEngComm 2012, 14, 86–89. [Google Scholar] [CrossRef]
- Martínez-Castañón, G.A.; Niño-Martínez, N.; Loyola-Rodríguez, J.P.; Patiño-Marín, N.; Martínez-Mendoza, J.R.; Ruiz, F. Synthesis of silver particles with different sizes and morphologies. Mater. Lett. 2009, 63, 1266–1268. [Google Scholar] [CrossRef]
- Wang, Y.; Wan, D.; Xie, S.; Xia, X.; Huang, C.Z.; Xia, Y. Synthesis of Silver Octahedra with Controlled Sizes and Optical Properties via Seed-Mediated Growth. ACS Nano 2013, 7, 4586–4594. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-G.; Joo, J.H.; Kim, H.-G.; Lee, J.-S. Shape-dependent reversible assembly properties of polyvalent DNA–silver nanocube conjugates. J. Phys. Chem. C 2012, 116, 2278–2284. [Google Scholar] [CrossRef]
- Bera, R.K.; Das, A.K.; Raj, C.R. Enzyme-cofactor-assisted photochemical synthesis of Ag nanostructures and shape-dependent optical sensing of Hg(II) ions. Chem. Mater. 2010, 22, 4505–4511. [Google Scholar] [CrossRef]
- Lee Penn, R.F.; Banfield, J. Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals. Science 1998, 281, 969–971. [Google Scholar] [CrossRef]
- Penn, R.L.F.; Banfield, J. Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: Insights from titania. Geochim. Cosmochim. Acta 1999, 63, 1549–1557. [Google Scholar] [CrossRef]
- Burrows, N.D.; Hale, C.R.; Penn, R.L. Effect of pH on the kinetics of crystal growth by oriented aggregation. Cryst. Growth Des. 2013, 13. [Google Scholar] [CrossRef]
- Fichthorn, K.A. Atomic-scale aspects of oriented attachment. Chem. Eng. Sci. 2015, 121, 10–15. [Google Scholar] [CrossRef]
- Lee, J.; Yang, J.; Gu Kwon, S.; Hyeon, T. Nonclassical nucleation and growth of inorganic nanoparticles. Nat. Rev. Mater. 2016, 1, 16034. [Google Scholar] [CrossRef]
- Li, D.; Nielsen, M.H.; Lee, J.R.; Frandsen, C.; Banfield, J.F.; De Yoreo, J.J. Direction-specific interactions control crystal growth by oriented attachment. Science 2012, 336, 1014–1018. [Google Scholar] [CrossRef] [PubMed]
- Lv, W.; He, W.; Wang, X.; Niu, Y.; Cao, H.; Dickerson, J.H.; Wang, Z. Understanding the oriented-attachment growth of nanocrystals from an energy point of view: A review. Nanoscale 2014, 6, 2531–2547. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Huang, F.; Lin, Z. Progress of nanocrystalline growth kinetics based on oriented attachment. Nanoscale 2010, 2, 18–34. [Google Scholar] [CrossRef] [PubMed]
- Nada, H. Computer Simulations: Essential Tools for Crystal Growth Studies. Crystals 2018, 8, 314. [Google Scholar] [CrossRef]
- Rahm, J.M.; Erhart, P. Beyond magic numbers: Atomic scale equilibrium nanoparticle shapes for any size. Nano Lett. 2017, 17, 5775–5781. [Google Scholar] [CrossRef] [PubMed]
- Baletto, F.; Ferrando, R.; Fortunelli, A.; Montalenti, F.; Mottet, C. Crossover among structural motifs in transition and noble-metal clusters. J. Chem. Phys. 2002, 116, 3856–3863. [Google Scholar] [CrossRef]
- Uppenbrink, J.; Wales, D.J. Structure and energetics of model metal clusters. J. Chem. Phys. 1992, 96, 8520–8534. [Google Scholar] [CrossRef]
- Kim, T.; Lee, C.H.; Joo, S.W.; Lee, K. Kinetics of gold nanoparticle aggregation: Experiments and modeling. J. Colloid Interface Sci. 2008, 318, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Plimpton, S.; Crozier, P.; Thompson, A. LAMMPS-large-scale atomic/molecular massively parallel simulator. J. Appl. Phys. 2007, 18, 43. [Google Scholar]
- Murph, S.E.H.; Murphy, C.J.; Leach, A.; Gall, K. A Possible Oriented Attachment Growth Mechanism for Silver Nanowire Formation. Cryst. Growth Des. 2015, 15, 1968–1974. [Google Scholar] [CrossRef]
- Hawa, T.; Henz, B.; Zachariah, M. Computer Simulation of Nanoparticle Aggregate Fracture. MRS Proc. 2011, 1056, 1056-HH08-45. [Google Scholar] [CrossRef]
- Feng, D.; Feng, Y.; Yuan, S.; Zhang, X.; Wang, G. Melting behavior of Ag nanoparticles and their clusters. Appl. Therm. Eng. 2017, 111, 1457–1463. [Google Scholar] [CrossRef]
- Wang, Q.; Xie, H.; Chen, Y.; Liu, C. Effects of temperature and pressure on the nucleation and growth of silver clusters from supersaturated vapor: A molecular dynamics analysis. Int. J. Modern Phys. B 2017, 31, 1750057. [Google Scholar] [CrossRef]
- Foiles, S.M.; Baskes, M.I.; Daw, M.S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 1986, 33, 7983–7991. [Google Scholar] [CrossRef]
- Videcoq, A.; Han, M.; Aabélard, P.; Pagnoux, C.; Rossignol, F.; Ferrando, R. Influence of the potential range on the aggregation of colloidal particles. Phys. A 2007, 374, 507–516. [Google Scholar] [CrossRef]
- Schneider, T.; Stoll, E. Molecular-dynamics study of a 3-dimensional one-component model for distortive phase-transitions. Phys. Rev. B 1978, 17, 1302. [Google Scholar] [CrossRef]
- Trimble, T.M.; Cammarata, R.C. Many-body effects on surface stress, surface energy and surface relaxation of fcc metals. Surf. Sci. 2008, 602, 2339–2347. [Google Scholar] [CrossRef]
- Qiang, Z.; Wang, B.; Wang, P.; Dellago, C.; Wang, Y.; Fang, Y. Nanoparticle-based crystal growth via multistep self-assembly. CrystEngComm 2013, 15, 5114–5118. [Google Scholar] [CrossRef]
- Niederberger, M.; Cölfen, H. Oriented attachment and mesocrystals: Non-classical crystallization mechanisms based on nanoparticle assembly. Phys. Chem. Chem. Phys. 2006, 8, 3271–3287. [Google Scholar] [CrossRef] [PubMed]
Building Block | Facet | Area/Å2 | E/mJ | E(111)/E(100) |
---|---|---|---|---|
TOC1 | (111) | 90.414 | 5.633 × 10−16 | 0.385 |
(100) | 208.803 | 14.64 × 10−16 | ||
TOC2 | (111) | 86.738 | 5.40 × 10−16 | 2.309 |
(100) | 33.383 | 2.34 × 10−16 | ||
TOC3 | (111) | 188.061 | 11.72 × 10−16 | 5.009 |
(100) | 33.383 | 2.34 × 10−16 | ||
TOC4 | (111) | 318.007 | 19.81 × 10−16 | 8.466 |
(100) | 33.383 | 2.34 × 10−16 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Hou, C.; Li, C.; Han, Y. Shape-Dependent Aggregation of Silver Particles by Molecular Dynamics Simulation. Crystals 2018, 8, 405. https://doi.org/10.3390/cryst8110405
Wang X, Hou C, Li C, Han Y. Shape-Dependent Aggregation of Silver Particles by Molecular Dynamics Simulation. Crystals. 2018; 8(11):405. https://doi.org/10.3390/cryst8110405
Chicago/Turabian StyleWang, Xue, Chaofeng Hou, Chengxiang Li, and Yongsheng Han. 2018. "Shape-Dependent Aggregation of Silver Particles by Molecular Dynamics Simulation" Crystals 8, no. 11: 405. https://doi.org/10.3390/cryst8110405
APA StyleWang, X., Hou, C., Li, C., & Han, Y. (2018). Shape-Dependent Aggregation of Silver Particles by Molecular Dynamics Simulation. Crystals, 8(11), 405. https://doi.org/10.3390/cryst8110405