Comparative Finite Element Analysis of Fatigue Crack Growth in High-Performance Metallic Alloys: Influence of Material Parameters and Paris Law Constants
Abstract
1. Introduction
- To systematically investigate the influence of key material properties (Paris Law constants C and m, yield strength, and modulus of elasticity) on fatigue crack growth (FCG) behavior.
- To quantify and compare the fatigue performance of four distinct high-strength alloys—Inconel 718, Ti-6Al-4V, Aluminum 7075-T6, and ASTM A514 Steel—under identical simulated loading conditions.
- To develop a data-driven framework that correlates material parameters with critical performance indicators (fatigue life, stress intensity factors, and safety factors) to aid in material selection for fatigue-critical applications.
2. Numerical Analysis
2.1. Model Setup and Simulation Methodology
2.2. Parametric Evaluation
- Paris Law Constants (C and m): These empirical constants, fundamental to FCG prediction, will be adjusted to reflect the FCG characteristics of different material classes and conditions.
- Yield Strength: The material’s resistance to plastic deformation will be varied to assess its impact on crack initiation and propagation behavior.
- Modulus of Elasticity (Young’s Modulus): This measure of stiffness will be altered to observe its effect on stress distribution and overall structural response.
2.3. Data Extraction and Analysis
- Equivalent Stress Intensity Factors (Keq): Calculated at the crack tip to characterize the driving force for crack propagation.
- Fatigue Life Cycles: The total number of cycles to failure for each simulated scenario.
- Von Mises Stress Distribution: To visualize and quantify the stress state within the component, particularly around the crack path.
- Strain Energy: To assess the energy absorbed by the material during deformation and crack growth.
- Safety Factors: Derived from the ratio of material strength to applied stress, providing insight into structural reliability.
2.4. Mesh Convergence Verification
3. Numerical Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tavares, S.M.O.; de Castro, P.M.S.T. An overview of fatigue in aircraft structures. Fatigue Fract. Eng. Mater. Struct. 2017, 40, 1510–1529. [Google Scholar] [CrossRef]
- Stephens, R.I.; Fatemi, A.; Stephens, R.R.; Fuchs, H.O. Metal Fatigue in Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2000. [Google Scholar]
- Manson, S.S.a.H.; Gary, R. Fatigue and Durability of Structural Materials; Asm International: Almere, The Netherlands, 2006. [Google Scholar]
- Younis, H.B.; Kamal, K.; Sheikh, M.F.; Hamza, A. Prediction of fatigue crack growth rate in aircraft aluminum alloys using optimized neural networks. Theor. Appl. Fract. Mech. 2022, 117, 103196. [Google Scholar] [CrossRef]
- Shiraiwa, T.; Briffod, F.; Enoki, M. Prediction of fatigue crack initiation of 7075 aluminum alloy by crystal plasticity simulation. Materials 2023, 16, 1595. [Google Scholar] [CrossRef]
- Alshoaibi, A.M.; Bashiri, A.H. Fatigue Crack Growth Studies under Mixed-Mode Loading in AISI 316 Stainless Steel. Appl. Sci. 2023, 13, 9446. [Google Scholar] [CrossRef]
- Smith, G.D.; Baker, B.A. Nickel and its Alloys. Mater. Mech. Des. 2006, 1, 256–277. [Google Scholar]
- Gruber, K.; Szymczyk-Ziółkowska, P.; Dziuba, S.; Duda, S.; Zielonka, P.; Seitl, S.; Lesiuk, G. Fatigue crack growth characterization of Inconel 718 after additive manufacturing by laser powder bed fusion and heat treatment. Int. J. Fatigue 2023, 166, 107287. [Google Scholar] [CrossRef]
- Connolley, T.; Starink, M.; Reed, P. Effect of oxidation on high temperature fatigue crack initiation and short crack growth in Inconel 718. Superalloys 2000, 5, 435–444. [Google Scholar]
- Song, Z.; Gao, W.; Wang, D.; Wu, Z.; Yan, M.; Huang, L.; Zhang, X. Very-high-cycle fatigue behavior of Inconel 718 alloy fabricated by selective laser melting at elevated temperature. Materials 2021, 14, 1001. [Google Scholar] [CrossRef]
- Choudhary, S.; Gaur, V. Improved properties of additively prepared Inconel 718 alloy post-processed with a new heat treatment. Mater. Sci. Eng. A 2024, 911, 146930. [Google Scholar] [CrossRef]
- Zhong, L.; Hu, H.; Liang, Y.; Huang, C. High cycle fatigue performance of inconel 718 alloys with different strengths at room temperature. Metals 2018, 9, 13. [Google Scholar] [CrossRef]
- Ajay, P.; Dabhade, V.V. Heat treatments of Inconel 718 nickel-based superalloy: A Review. Met. Mater. Int. 2024, 31, 1–28. [Google Scholar] [CrossRef]
- Neikter, M.; Colliander, M.; de Andrade Schwerz, C.; Hansson, T.; Åkerfeldt, P.; Pederson, R.; Antti, M.-L. Fatigue crack growth of electron beam melted Ti-6Al-4V in high-pressure hydrogen. Materials 2020, 13, 1287. [Google Scholar] [CrossRef]
- Kalluri, S. Characterization of Fatigue Crack Initiation and Propagation in Ti-6Al-4V with Electrical Potential Drop Technique; National Aeronautics and Space Administration: Washington, WA, USA, 1988; Volume 100877. [Google Scholar]
- Nakatani, M.; Masuo, H.; Tanaka, Y.; Murakami, Y. Effect of surface roughness on fatigue strength of Ti-6Al-4V alloy manufactured by additive manufacturing. Procedia Struct. Integr. 2019, 19, 294–301. [Google Scholar] [CrossRef]
- Wu, Y.; He, W.; Ma, H.; Nie, X.; Liang, X.; Pan, J.; Wang, S.; Shang, M.; Cheng, L. Titanium alloy materials with very high cycle fatigue: A review. Materials 2024, 17, 2987. [Google Scholar] [CrossRef]
- Fu, R.; Ling, C.; Zheng, L.; Zhong, Z.; Hong, Y. Continuum damage mechanics-based fatigue life prediction of L-PBF Ti-6Al-4V. Int. J. Mech. Sci. 2024, 273, 109233. [Google Scholar] [CrossRef]
- Johnsen, A.R.; Petersen, J.E.; Pedersen, M.M.; Yıldırım, H.C. Factors affecting the fatigue strength of additively manufactured Ti-6Al-4V parts. Weld. World 2024, 68, 361–409. [Google Scholar] [CrossRef]
- Rutto, R.; Obara, C.; Harrison, S. Investigation of fatigue cracking in aluminium 7075 alloys and the role of heat treatment. Adv. Mater. Process. Technol. 2024, 10, 3700–3723. [Google Scholar] [CrossRef]
- Zichil, V.; Grigoras, C.C.; Ciubotariu, V.A. Notches and Fatigue on Aircraft-Grade Aluminium Alloys. Materials 2024, 17, 4639. [Google Scholar] [CrossRef]
- Xie, C.; Sun, T.; Li, L.; Zheng, Z. Effect of Microstructure on Fatigue Damage Accumulation in 7075 Aluminum Alloy Subjected to a Single Compressive Overload. Metals 2024, 14, 980. [Google Scholar] [CrossRef]
- Alssayegh, A.; Abdellah, M.Y.; Hassan, M.K.; Azam, S.; Melaibari, A.; Khashaba, U. Optimizing high cycle fatigue predictions in notched Al 7075-T6: An analytical approach to rotating bending behavior. Results Eng. 2025, 25, 103623. [Google Scholar] [CrossRef]
- Schichtel, J.; Datta, S.; Chattopadhyay, A. Study of crack initiation and failure mechanisms in Al 7075 T6 alloy under ultrasonic fatigue. In Proceedings of the AIAA Scitech 2021 Forum, Nashville, TN, USA, 11–15, 19–21 January 2021; p. 1275. [Google Scholar]
- Hunt, E.M. Crack Initiation and Growth Behavior at Corrosion Pit in 7075-T6 High Strength Aluminum Alloy. Master’s Thesis, AFIT, Wright-Patterson AFB, OH, USA, 2013. Available online: https://scholar.afit.edu/etd/829 (accessed on 8 September 2025).
- Gdoutos, E.; Konsta-Gdoutos, M. Fatigue and Environment-Assisted Testing. In Mechanical Testing of Materials; Springer: Berlin/Heidelberg, Germany, 2024; pp. 125–154. [Google Scholar]
- Ince, A. Computational crack propagation modeling of welded structures under as-welded and high frequency mechanical impact (HFMI) treatment conditions. Fatigue Fract. Eng. Mater. Struct. 2022, 45, 578–592. [Google Scholar] [CrossRef]
- Kyekyere, E.; Olakanmi, E.; Prasad, R.; Matshediso, B.; Motimedi, T.; Botes, A.; Pityana, S. Analysis of failure characteristics of screen plates of ring hammer crusher used in coal handling applications. Eng. Fail. Anal. 2024, 162, 108351. [Google Scholar] [CrossRef]
- Barsom, J. Fatigue-crack growth under variable-amplitude loading in ASTM A514-B steel. In Progress in Flaw Growth and Fracture Toughness Testing; ASTM International: West Conshohocken, PA, USA, 1973. [Google Scholar] [CrossRef]
- Connor, R.J.; Lloyd, J.B. Maintenance Actions to Address Fatigue Cracking in Steel Bridge Structures; Purdue University: West Lafayette, IN, USA, 2017. [Google Scholar]
- Suresh, S. Fatigue of Materials, 2nd ed.; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar] [CrossRef]
- Alshoaibi, A.M. Computational Simulation of 3D Fatigue Crack Growth under Mixed-Mode Loading. Appl. Sci. 2021, 11, 5953. [Google Scholar] [CrossRef]
- Alshoaibi, A.M. Fatigue Crack Growth Analysis in Modified Compact Tension Specimen with Varying Stress Ratios: A Finite Element Study. Appl. Sci. 2023, 13, 13160. [Google Scholar] [CrossRef]
- Alshoaibi, A.M.; Fageehi, Y.A. Numerical analysis of fatigue crack growth path and life predictions for linear elastic material. Materials 2020, 13, 3380. [Google Scholar] [CrossRef]
- Alshoaibi, A.M.; Fageehi, Y.A. Numerical Analysis on Fatigue Crack Growth at Negative and Positive Stress Ratios. Materials 2023, 16, 3669. [Google Scholar] [CrossRef] [PubMed]
- Bjørheim, F. Practical Comparison of Crack Meshing in ANSYS Mechanical APDL 19.2; University of Stavanger: Stavanger, Norway, 2019. [Google Scholar]
- ANSYS. Academic Research Mechanical, Release 19.2, Help System. In Coupled Field Analysis Guide; ANSYS, Inc.: Canonsburg, PA, USA, 2020. [Google Scholar]
- Kebir, T.; Benguediab, M.; Imad, A. A model for fatigue crack growth in the paris regime under the variability of cyclic hardening and elastic properties. Fatigue Aircr. Struct. 2017, 2017, 117–135. [Google Scholar] [CrossRef]
- Xiangqiao, Y.; Shanyi, D.; Zehua, Z. Mixed-mode fatigue crack growth prediction in biaxially stretched sheets. Eng. Fract. Mech. 1992, 43, 471–475. [Google Scholar] [CrossRef]
- Giner, E.; Sukumar, N.; Tarancón, J.; Fuenmayor, F. An Abaqus implementation of the extended finite element method. Eng. Fract. Mech. 2009, 76, 347–368. [Google Scholar] [CrossRef]
- Fageehi, Y.A.; Alshoaibi, A.M. Enhancing Fatigue Life Prediction Accuracy: A Parametric Study of Stress Ratios and Hole Position Using SMART Crack Growth Technology. Crystals 2025, 15, 596. [Google Scholar] [CrossRef]
- Denny, J.; Jinoop, A.; Paul, C.; Singh, R.; Bindra, K. Fatigue crack propagation behaviour of inconel 718 structures built using directed energy deposition based laser additive manufacturing. Mater. Lett. 2020, 276, 128241. [Google Scholar] [CrossRef]
- Majchrowicz, K.; Chmielewska, A.; Wysocki, B.; Przybysz-Gloc, S.; Kulczyk, M.; Garbacz, H.; Pakieła, Z. The Effect of Microstructural Defects on High-Cycle Fatigue of Ti Grade 2 Manufactured by PBF-LB and Hydrostatic Extrusion. Crystals 2023, 13, 1250. [Google Scholar] [CrossRef]
- Soni, S. Numerical Modelling of Crack Growth Path in Linear Elastic Materials. In Fracture Behavior of Nanocomposites and Reinforced Laminate Structures; Springer: Berlin/Heidelberg, Germany, 2024; pp. 157–172. [Google Scholar]
- Cheng, Z.; Wang, H. A novel X-FEM based fast computational method for crack propagation. arXiv 2017, arXiv:1708.01610. [Google Scholar] [CrossRef]
- Jafari, A.; Broumand, P.; Vahab, M.; Khalili, N. An eXtended finite element method implementation in COMSOL multiphysics: Solid mechanics. Finite Elem. Anal. Des. 2022, 202, 103707. [Google Scholar] [CrossRef]
Element Size (mm) | No. of Nodes | No. of Elements | Equivalent Stress Intensity Factor (MPa mm0.5) |
---|---|---|---|
8 | 44,763 | 31,852 | 1969.8 |
4 | 58,747 | 40,656 | 1800.96 |
2 | 140,300 | 95,014 | 1618.05 |
1 | 581,980 | 398,566 | 1407 |
0.5 | 2,567,532 | 1,795,727 | 1421.4 |
Property | Inconel 718 (Aged) | Ti-6Al-4V | Aluminum 7075-T6 | ASTM A514 Steel |
---|---|---|---|---|
Ultimate Tensile Strength | 1240 MPa | 895 MPa | 572 MPa | 828 MPa |
Yield Strength | 1030 MPa | 828 MPa | 469 MPa | 690 MPa |
Modulus of Elasticity | 200 GPa | 114 GPa | 71.7 GPa | 205 GPa |
Poisson’s Ratio | 0.294 | 0.342 | 0.33 | 0.29 |
Paris’ law coefficient, C (m/cycle) | 1.0 × 10−12 [42] | 1.2 × 10−11 [43] | 5.27 × 10−10 [44] | 5 × 10−11 [29] |
Paris law exponent, m | 3.3 [42] | 4.1 [43] | 2.947 [44] | 3.5 [29] |
Inconel 718 | Ti-6Al-4V | Aluminum 7075-T6 | ASTM A514 Steel | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
KI | KII | N | KI | KII | N | KI | KII | N | KI | KII | N |
47.944 | 7.3334 | 4.14 × 106 | 47.753 | 7.2551 | 15,465 | 47.753 | 7.3217 | 31,028 | 48.068 | 7.2256 | 38,288 |
151.06 | 51.877 | 4.24 × 106 | 151.05 | 48.994 | 15,573 | 158.08 | 53.701 | 32,002 | 158.36 | 49.804 | 38,892 |
208.22 | −29.44 | 4.28 × 106 | 196.68 | −25.582 | 15,635 | 202.55 | −28.507 | 32,548 | 203.62 | −25.367 | 39,240 |
249.13 | 13.677 | 4.31 × 106 | 246.95 | 6.8091 | 15,672 | 246.04 | 11.661 | 32,999 | 256 | 8.4968 | 39,450 |
287.12 | −8.1843 | 4.33 × 106 | 272.94 | −1.2679 | 15,697 | 278.45 | −8.2364 | 33,281 | 272.92 | 0.418 | 39,606 |
309.35 | 0.4296 | 4.35 × 106 | 317.91 | 0.73614 | 15,710 | 320.84 | −0.27325 | 33,468 | 324.83 | 1.96 × 10−2 | 39,698 |
357.69 | −7.4664 | 4.36 × 106 | 339.57 | −5.8904 | 15,719 | 356.07 | −1.563 | 33,601 | 351.39 | −4.0843 | 39,762 |
402.95 | −1.2922 | 4.36 × 106 | 388.14 | −4.6769 | 15,725 | 400.32 | −5.0787 | 33,705 | 425.36 | −6.2974 | 39,799 |
457.1 | −8.8085 | 4.37 × 106 | 455.81 | −2.9652 | 15,728 | 448.04 | −8.519 | 33,782 | 444.67 | −9.6528 | 39,826 |
493.58 | −10.718 | 4.37 × 106 | 469.52 | −13.663 | 15,730 | 527.69 | −12.931 | 33,828 | 544.13 | −11.805 | 39,839 |
574.93 | −11.463 | 4.37 × 106 | 578.71 | −10.093 | 15,731 | 565.91 | −12.009 | 33,865 | 560.53 | −6.7646 | 39,852 |
629.04 | −13.804 | 4.37 × 106 | 665.74 | −25.757 | 33,889 | 671.04 | −17.278 | 39,860 | |||
724.25 | −17.856 | 4.37 × 106 | 735.83 | 11.695 | 33,907 | 720.38 | −29.063 | 39,865 | |||
809.14 | −36.029 | 4.37 × 106 | 810.86 | −32.987 | 33,918 | 859.7 | −30.226 | 39,868 | |||
903.18 | −26.554 | 4.38 × 106 | 961.95 | −12.108 | 33,926 | 886.36 | −26.741 | 39,870 | |||
1016.4 | −38.072 | 4.38 × 106 | 1008.7 | −87.617 | 33,931 | ||||||
1104.6 | −56.38 | 4.38 × 106 | 1187 | −61.95 | 33,936 | ||||||
1248.7 | −85.967 | 4.38 × 106 | 1185.4 | −129.11 | 33,939 | ||||||
1271.4 | −101.88 | 4.38 × 106 | 1488.4 | −69.504 | 33,941 | ||||||
1546 | −175.48 | 4.38 × 106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fageehi, Y.A.; Alshoaibi, A.M. Comparative Finite Element Analysis of Fatigue Crack Growth in High-Performance Metallic Alloys: Influence of Material Parameters and Paris Law Constants. Crystals 2025, 15, 801. https://doi.org/10.3390/cryst15090801
Fageehi YA, Alshoaibi AM. Comparative Finite Element Analysis of Fatigue Crack Growth in High-Performance Metallic Alloys: Influence of Material Parameters and Paris Law Constants. Crystals. 2025; 15(9):801. https://doi.org/10.3390/cryst15090801
Chicago/Turabian StyleFageehi, Yahya Ali, and Abdulnaser M. Alshoaibi. 2025. "Comparative Finite Element Analysis of Fatigue Crack Growth in High-Performance Metallic Alloys: Influence of Material Parameters and Paris Law Constants" Crystals 15, no. 9: 801. https://doi.org/10.3390/cryst15090801
APA StyleFageehi, Y. A., & Alshoaibi, A. M. (2025). Comparative Finite Element Analysis of Fatigue Crack Growth in High-Performance Metallic Alloys: Influence of Material Parameters and Paris Law Constants. Crystals, 15(9), 801. https://doi.org/10.3390/cryst15090801