First-Principles Investigation of the Structural Stability and Physical Properties of Lead-Free Ge-Based Halide Perovskites
Abstract
1. Introduction
2. Calculation Methods
3. Results and Discussion
3.1. Structural Stability
3.2. Electronic Structure
3.3. Effective Mass
3.4. Mechanical Properties
3.5. Optical Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wei, S.H.; Yan, Y.F.; Yin, W.J. Anomalous Alloy Properties in Mixed Halide Perovskites. J. Phys. Chem. Lett. 2014, 5, 3625. [Google Scholar] [CrossRef]
- Yin, W.J.; Shi, T.T.; Yan, Y.F. Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance. Adv. Mater. 2014, 26, 4653. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.J.; Shi, T.; Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 2014, 104, 063903. [Google Scholar] [CrossRef]
- Turedi, B.; Lintangpradipto, M.N.; Sandberg, O.J.; Yazmaciyan, A.; Matt, G.J.; Alsalloum, A.Y.; Almasabi, K.; Sakhatskyi, K.; Yakunin, S.; Zheng, X.; et al. Single-Crystal Perovskite Solar Cells Exhibit Close to Half A Millimeter Electron-Diffusion Length. Adv. Mater. 2022, 34, e2202390. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.H.; Zhuang, B.; Lin, J.D.; Pang, T.; Zeng, L.W.; Chen, D.Q. Ultralong Decay Lifetime for CsPbBr3 Perovskite Quantum Dots Glass. Adv. Optical Mater. 2025, 13, e01385. [Google Scholar] [CrossRef]
- Yuan, Y.; Xu, R.; Xu, H.T.; Hong, F.; Xu, F.; Wang, L.J. Nature of the band gap of halide perovskites ABX3 (A = CH3NH3, Cs; B = Sn, Pb; X = Cl, Br, I): First-principles calculations. Chin. Phys. B 2015, 24, 116302. [Google Scholar] [CrossRef]
- Li, X.M.; Wang, Y.; Sun, H.D.; Zeng, H. Amino-Mediated Anchoring Perovskite Quantum Dots for Stable and Low-Threshold Random Lasing. Adv. Mater. 2017, 29, 1701185. [Google Scholar] [CrossRef]
- Sun, H.X.; Tian, W.; Cao, F.; Xiong, J.; Li, L. Ultrahigh-Performance Self-Powered Flexible Double-Twisted Fibrous Broadband Perovskite Photodetector. Adv. Mater. 2018, 30, e1706986. [Google Scholar] [CrossRef]
- Lin, W.H.; Canton, S.E.; Zheng, K.; Pullerits, T. Carrier Cooling in Lead Halide Perovskites: A Perspective on Hot Carrier Solar Cells. ACS Energy Lett. 2023, 9, 298–307. [Google Scholar] [CrossRef]
- Thatribud, A.; Rassamesard, A. Electronic and optical properties of lead halide perovskite (MAPbX3) (X = I, Br, and Cl) by first principles calculations. Phys. Scr. 2022, 97, 110245. [Google Scholar] [CrossRef]
- Schwenzer, J.A.; Hellmann, T.; Nejand, B.A.; Hu, H.; Abzieher, T.; Schackmar, F.; Hossain, I.M.; Fassl, P.; Mayer, T.; Jaegermann, W.; et al. Thermal Stability and Cation Composition of Hybrid Organic-Inorganic Perovskites. ACS Appl. Mater. Interfaces 2021, 13, 15292. [Google Scholar] [CrossRef]
- Niu, G.; Guo, X.; Wang, L. Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 2015, 3, 8970. [Google Scholar] [CrossRef]
- Li, R.; Zhang, S.; Zhang, H.; Wang, Z.; Feng, X.; Du, Y.; Zhou, T.; Chen, X.; Liu, P.; Liu, L.; et al. Customizing Aniline-Derived Molecular Structures to Attain beyond 22% Efficient Inorganic Perovskite Solar Cells. Angew. Chem. Int. Ed. 2024, 63, e202410600. [Google Scholar] [CrossRef]
- Hui, W.; Kang, X.X.; Wang, B.H.; Li, D.L.; Su, Z.H.; Bao, Y.Q.; Gu, L.; Zhang, B.; Gao, X.Y.; Song, L.; et al. Stable Electron-Transport-Layer-Free Perovskite Solar Cells with over 22% Power Conversion Efficiency. Nano Lett. 2023, 23, 2195–2202. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Yang, Y.; Gong, X. Recent Advancements and Challenges for Low-Toxicity Perovskite Materials. ACS Appl. Mater. Interfaces 2020, 12, 26776. [Google Scholar] [CrossRef] [PubMed]
- Kolesnikov, S.; Minnikova, T.; Kazeev, K.; Yulia, A.; Natalia, E. Assessment of the Ecotoxicity of Pollution by Potentially Toxic Elements by Biological Indicators of Haplic Chernozem of Southern Russia (Rostov region). Water Air Soil Pollut 2022, 233, 18. [Google Scholar] [CrossRef] [PubMed]
- Muntasar, A.; Roux, D.L.; Denes, G. Stabilization of the unhybridized Sn2+, stannous ion in the BaClF structure and its characterization by 119 Sn Mössbauer spectroscopy. J. Radioanal. Nucl. Ch. 1995, 190, 431–437. [Google Scholar] [CrossRef]
- Hamideddine, I.; Tahiri, N.; Bounagui, O.E.; Ez-Zahraouy, H. Ab initio study of structural and optical properties of the halide perovskite KBX3 compound. J. Korean Ceram. Soc. 2022, 59, 350. [Google Scholar] [CrossRef]
- Pandey, M.; Jacobsen, K.W.; Thygesen, K.S. Band Gap Tuning and Defect Tolerance of Atomically Thin Two-Dimensional Organic–Inorganic Halide Perovskites. J. Phys. Chem. Lett. 2016, 7, 4346. [Google Scholar] [CrossRef]
- Ming, W.M.; Shi, H.; Du, M.H. Large dielectric constant, high acceptor density, and deep electron traps in perovskite solar cell material CsGeI3. J. Mater. Chem. A 2016, 4, 13852. [Google Scholar] [CrossRef]
- Krishnamoorthy, T.; Ding, H.; Yan, C.; Leong, W.L.; Baikie, T.; Zhang, Z.; Sherburne, M.; Li, S.; Asta, M.; Mathews, N.; et al. Lead-free Germanium Iodide Perovskite Materials for Photovoltaic Application. J. Mater. Chem. A 2015, 3, 23829. [Google Scholar] [CrossRef]
- Roknuzzaman, M.; Ostrikov, K.; Wang, H.; Du, A.; Tesfamichael, T. Towards lead-free perovskite photovoltaics and optoelectronics by ab-initio simulations. Sci. Rep. 2017, 7, 14025. [Google Scholar] [CrossRef]
- Chen, L.J. Synthesis and optical properties of lead-free cesium germanium halide perovskite quantum rods. RSC Adv. 2018, 8, 18396–18399. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.C.; Kuai, Y.; Li, X.; Hao, J.B.; Li, L.; Liu, Y.; Ma, X.G.; Wu, L.Y.; Lu, P.F. Impact of Halogen Substitution on the Electronic and Optical Properties of 2D Lead-Free Hybrid Perovskites. J. Phys. Chem. C 2021, 125, 15742. [Google Scholar] [CrossRef]
- Ikram, M.; Malik, R.; Raees, R.; Imran, M.; Wang, F.; Ali, S.; Khan, M.; Khan, Q.; Maqbool, M. Recent advancements and future insight of lead-free non-toxic perovskite solar cells for sustainable and clean energy production: A review. Sustain. Energy Technol. Assess. 2022, 53, 16. [Google Scholar] [CrossRef]
- Chen, R.; Luo, B.; Liu, C.; Ma, X.N.; Qiao, L.; Yao, B.X.; Gao, R.L.; Feng, Z.J.; Liu, J.; Lin, H.; et al. Polarization Controlled Photocurrent in Perovskite CsGeX3 (X = Cl, Br, I). J. Phys. Chem. C 2023, 39, 19788. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, H.; Huang, W.; Zuo, Y.; Cheng, J. A Systematical Study on Bands and Defects of CsBX3 (B = Pb, Sn, Ge, X = Cl, Br, I) Perovskite Based on First Principles. Molecules 2024, 29, 2479. [Google Scholar] [CrossRef]
- Pingak, R.K.; Bouhmaidi, S.; Setti, L. Investigation of structural, electronic, elastic and optical properties of Ge-halide perovskites NaGeX3 (X = Cl, Br and I): A first-principles DFT study. Physica B 2023, 663, 415003. [Google Scholar] [CrossRef]
- Luo, Y.R.; Tian, H.; Li, X.; Chen, L.; Yang, Y.; Wu, D. Diversity of structural phases in AGeX3 halides. Phys. Rev. B 2022, 106, 024112. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Blochl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Heyd, J.; Scuseria, G.E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. Chem. Phys. 2003, 118, 8207. [Google Scholar] [CrossRef]
- Chen, H.; Li, M.; Wang, B.; Ming, S.; Su, J. Structure, electronic and optical properties of CsPbX3 halide perovskite:A first-principles study. J. Alloys Compd. 2021, 862, 158442. [Google Scholar] [CrossRef]
- Chadi, D.J. Special points for Brilloofn-zone integrations. Phys. Rev. B 1977, 16, 1746. [Google Scholar] [CrossRef]
- Kieslich, G.; Sun, S.; Cheetham, A.K. An extended Tolerance Factor approach for organic–inorganic perovskites. Chem. Sci. 2015, 6, 3430. [Google Scholar] [CrossRef]
- Yi, Z.J.; Ladi, N.H.; Shai, X. Will organic–inorganic hybrid halide lead perovskites be eliminated from optoelectronic applications? Nanoscale Adv. 2019, 1, 1276. [Google Scholar] [CrossRef]
- Ovi, I.A.; Hasan, M.R.; Apon, I.A.; Zahra, F.T. Pressure-driven semiconducting to metallic transition in francium tin trihalides perovskite with improved optoelectronic performance: A DFT study. Mater. Res. Express 2024, 11, 065904. [Google Scholar] [CrossRef]
- Sarker, M.A.; Muntasir, M.; Momin, M.A.; Solayman, M.; Islam, M.R. Pressure-Induced Structural, Electronic, and Optical Properties of Lead-Free NaGeX3(X = F, Cl, Br, and I) Perovskites: First-Principles Calculation. Adv. Theory Simul. 2024, 7, 2400112. [Google Scholar] [CrossRef]
- Sun, W.H.; Dacek, S.T.; Ong, S.P.; Hautier, G.; Jain, A.; Richards, W.D.; Gamst, A.C.; Persson, K.A.; Ceder, G. The thermodynamic scale of inorganic crystalline metastability. Sci. Adv. 2016, 2, e1600225. [Google Scholar] [CrossRef]
- Bartel, C.J.; Millican, S.L.; Deml, A.M.; Rumptz, J.R.; Tumas, W.; Weimer, A.W.; Lany, S.; Stevanović, V.; Musgrave, C.B.; Holder, A.M. Physical descriptor for the Gibbs energy of inorganic crystalline solids and temperature-dependent materials chemistry. Nat. Commun. 2018, 9, 4168. [Google Scholar] [CrossRef] [PubMed]
- Kirklin, S.; Saal, J.E.; Meredig, B.; Thompson, A.; Doak, J.W.; Aykol, M.; Rühl, S.; Wolverton, C. The Open Quantum Materials Database (OQMD): Assessing the accuracy of DFT formation energies. NPJ Comput. Mater. 2015, 1, 15010. [Google Scholar] [CrossRef]
- Grancini, G.; Nazeeruddin, M.K. Dimensional tailoring of hybrid perovskites for photovoltaics. Nat. Rev. Mater. 2019, 4, 22. [Google Scholar] [CrossRef]
- Tripathi, G.S.; Shadangi, S.K. Many-body theory of effective mass in degenerate semiconductors. Int. J. Mod. Phys. B 2018, 32, 1850082. [Google Scholar] [CrossRef]
- Ompong, D.; Inkoom, G.; Singh, J. Effective mass of heavy, light, and spin split-off band electron and hole g-factor in cubic perovskite materials. J. Appl. Phys. 2020, 128, 235109. [Google Scholar] [CrossRef]
- Ghaithan, H.M.; Alahmed, Z.A.; Qaid, S.M.H.; Aldwayyan, A.S. Density functional theory analysis of structural, electronic, and optical properties of mixed-halide orthorhombic inorganic perovskites. ACS Omega 2021, 6, 30752. [Google Scholar] [CrossRef]
- Gao, J.; Jiang, C.L.; Fan, D.H.; Zhang, M.; Liu, F.S.; Tang, B. Criteria of Mechanical Stability of Seven Crystal Systems and Its Application: Taking Silica as an Example. Chin. J. High Press. Phys. 2022, 36, 051101. [Google Scholar] [CrossRef]
- Pugh, S.F. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, London, Edinburgh Dublin Phil. Philos. Mag. 1954, 45, 823–843. [Google Scholar] [CrossRef]
- Lu, C.L.; Zhang, L.; Zhang, Y.W.; Liu, S.Y.; Mei, Y. Electronic, optical properties, surface energies and work functions of Ag8SnS6: First-principles method. Chin. Phys. B 2015, 24, 017501. [Google Scholar] [CrossRef]
- Rai, D.P.; Shankar, A.; Sakhya, A.P.; Sinha, T.P.; Merabet, B.; Khenata, R.; Boochani, A.; Solaymani, S.; Thapa, R.K. Electronic and optical properties of cubic SrHfO3 at different pressures: A first principles study. Mater. Chem. Phys. 2017, 186, 620. [Google Scholar] [CrossRef]
- Penn, D.R. Wave-Number-Dependent Dielectric Function of Semiconductors. Phys. Rev. 1962, 128, 2093. [Google Scholar] [CrossRef]
Halide | LC/Å | Eg/eV | ||||||
---|---|---|---|---|---|---|---|---|
R3c | m | Pmna | R3m | Our Work GGA | Our Work HSE06 | Other Work GGA [29] | τ | |
NaGeI3 | a = 7.90, c = 22.48 | a = 5.90 | a = 4.41, b = 11.05, c = 16.32 | a = 8.63, b = 8.56, c = 7.71 | 2.00 | 2.69 | 2.00 | 0.86 |
NaGeBr3 | a = 7.50, c = 21.42 | a = 5.49 | a = 4.16, b = 11.00, c = 13.71 | a = 8.41, b = 7.74, c = 9.23 | 2.83 | 3.76 | 2.79 | 0.88 |
NaGeCl3 | a = 7.25, c = 20.44 | a = 5.20 | a = 3.98, b = 10.79, c = 12.65 | a = 8.32, b = 7.58, c = 9.20 | 3.74 | 4.75 | 3.72 | 0.89 |
Halide | me (m0) | mh (m0) | |||||||
---|---|---|---|---|---|---|---|---|---|
Z-Γ | Γ-X | AVG | Z-Γ | Γ-X | AVG | Z-Γ | Γ-X | AVG | |
NaGeI3 | 0.39 | 0.45 | 0.42 | 0.65 | 0.50 | 0.58 | 1.67 | 1.11 | 1.39 |
NaGeBr3 | 0.76 | 0.82 | 0.79 | 0.64 | 1.90 | 1.27 | 0.84 | 2.32 | 1.58 |
NaGeCl3 | 1.51 | 1.46 | 1.49 | 0.86 | 3.56 | 2.21 | 0.57 | 2.44 | 1.50 |
Elastic Parameters | This Work for R3c | m [28] | ||||
---|---|---|---|---|---|---|
NaGeCl3 | NaGeBr3 | NaGeI3 | NaGeCl3 | NaGeBr3 | NaGeI3 | |
C11 (GPa) | 10.52 | 8.91 | 13.65 | 57.89 | 50.78 | 41.11 |
C12 (GPa) | 3.80 | 2.55 | 4.05 | 10.96 | 8.64 | 6.32 |
C13 (GPa) | 2.32 | 1.70 | 2.94 | / | / | / |
C14 (Gpa) | −0.90 | −0.50 | −1.16 | / | / | / |
C33 (GPa) | 6.72 | 5.33 | 9.70 | / | / | / |
C44 (GPa) | 4.03 | 3.21 | 4.68 | 6.11 | 5.79 | 5.57 |
B (GPa) | 4.79 | 3.75 | 6.21 | 20.26 | 22.69 | 17.92 |
E (GPa) | 8.33 | 7.10 | 10.88 | 28.57 | 22.11 | 23.00 |
G (GPa) | 3.44 | 3.00 | 4.50 | 10.86 | 10.03 | 8.98 |
B/G | 1.39 | 1.25 | 1.38 | 2.45 | 2.26 | 2.00 |
0.21 | 0.18 | 0.21 | 0.32 | 0.31 | 0.27 |
Compounds | ε1(0) | n(0) | R(0) |
---|---|---|---|
NaGeI3 | 5.68 | 2.38 | 0.17 |
NaGeBr3 | 4.01 | 2.03 | 0.12 |
NaGeCl3 | 3.34 | 1.83 | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Li, L.; Zhang, J.; Zhong, S.; Xu, B.; Wu, M.; Ouyang, C. First-Principles Investigation of the Structural Stability and Physical Properties of Lead-Free Ge-Based Halide Perovskites. Crystals 2025, 15, 793. https://doi.org/10.3390/cryst15090793
Wang L, Li L, Zhang J, Zhong S, Xu B, Wu M, Ouyang C. First-Principles Investigation of the Structural Stability and Physical Properties of Lead-Free Ge-Based Halide Perovskites. Crystals. 2025; 15(9):793. https://doi.org/10.3390/cryst15090793
Chicago/Turabian StyleWang, Liang, Longze Li, Jiayin Zhang, Shuying Zhong, Bo Xu, Musheng Wu, and Chuying Ouyang. 2025. "First-Principles Investigation of the Structural Stability and Physical Properties of Lead-Free Ge-Based Halide Perovskites" Crystals 15, no. 9: 793. https://doi.org/10.3390/cryst15090793
APA StyleWang, L., Li, L., Zhang, J., Zhong, S., Xu, B., Wu, M., & Ouyang, C. (2025). First-Principles Investigation of the Structural Stability and Physical Properties of Lead-Free Ge-Based Halide Perovskites. Crystals, 15(9), 793. https://doi.org/10.3390/cryst15090793