Effects of Pressure on Hydrogen Diffusion Behaviors in Corundum
Abstract
1. Introduction
2. Computational Methods
3. Results and Discussion
3.1. Hydrogen Atom Diffusion in Corundum
3.2. Hydrogen Molecule Diffusion in Corrundum
3.3. Diffusion Coefficient of Hydrogen in Corundum
4. Discussion and Geological Implications
5. Conclusions
- Energetically, isolated hydrogen atoms are unstable within the corundum lattice and have a strong thermodynamic driving force to aggregate and form H2 molecules.
- Kinetically, however, the diffusion energy barrier for atomic H (e.g., 1.01 eV at 0 GPa) is significantly lower than that for a H2 molecule (2.30 eV at 0 GPa). This indicates that hydrogen’s primary migration mechanism within corundum is as individual atoms, not molecules.
- The diffusion energy barrier for atomic H increases systematically with pressure, rising from 1.01 eV at 0 GPa to 1.77 eV at 100 GPa. This effect acts to inhibit diffusion.
- The overall diffusion coefficient, calculated using the Arrhenius equation, incorporates the competing effects of pressure and temperature. Our results show that the diffusion coefficient increases with temperature but decreases with pressure.
- Under deep mantle geotherm conditions, the effect of high pressure is dominant, resulting in a very low diffusion coefficient. Consequently, even under the most favorable shallow mantle conditions, the maximum diffusion length over a 100–500 million-year mantle convection cycle is estimated to be approximately 5.4 km. This limited diffusion provides strong microscopic support for the hypothesis of a heterogeneous distribution of water in the lower mantle.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kurko, S.; Mamula, B.P.; Rmuš, J.; Novaković, J.G.; Novaković, N. DFT study of boron doped MgH2: Bonding mechanism, hydrogen diffusion and desorption. Int. J. Hydrogen Energy 2020, 45, 7947–7957. [Google Scholar] [CrossRef]
- Castelli, I.E.; Soriga, S.G.; Man, I.C. Effects of the cooperative interaction on the diffusion of hydrogen on MgO (100). J. Chem. Phys. 2018, 149, 034704. [Google Scholar] [CrossRef] [PubMed]
- Tuttle, B. Energetics and diffusion of hydrogen in SiO2. Phys. Rev. B 2000, 61, 4417. [Google Scholar] [CrossRef]
- Wang, F.; Lai, W.; Li, R.; He, B.; Li, S. Fast hydrogen diffusion along the Σ7 grain boundary of α-Al2O3: A first-principles study. Int. J. Hydrogen Energy 2016, 41, 22214–22220. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, F.; Lai, W. Fast hydrogen diffusion along Σ13 grain boundary of α-Al2O3 and its suppression by the dopant Cr: A first-principles study. Int. J. Hydrogen Energy 2017, 42, 10124–10130. [Google Scholar] [CrossRef]
- Jiraroj, T.; Boonchun, A.; Reunchan, P.; Limpijumnong, S. Identification of hydrogen defects in α-Al2O3 by first-principles local vibration mode calculations. Phys. Rev. B 2017, 95, 134103. [Google Scholar] [CrossRef]
- Köhler, T.; Mehner, E.; Hanzig, J.; Gärtner, G.; Funke, C.; Joseph, Y.; Leisegang, T.; Stöcker, H.; Meyer, D.C. Kinetics of the hydrogen defect in congruent LiMO3. J. Mater. Chem. C 2021, 9, 2350–2367. [Google Scholar] [CrossRef]
- Han, Z.; Chen, H.; Zhou, S. Dissociation and diffusion of hydrogen on defect-free and vacancy defective Mg (0001) surfaces: A density functional theory study. Appl. Surf. Sci. 2017, 394, 371–377. [Google Scholar] [CrossRef]
- He, Y.; Su, Y.; Yu, H.; Chen, C. First-principles study of hydrogen trapping and diffusion at grain boundaries in γ-Fe. Int. J. Hydrogen Energy 2021, 46, 7589–7600. [Google Scholar] [CrossRef]
- Cai, L.; Bai, G.; Gao, X.; Li, Y.; Hou, Y. Experimental investigation on the hydrogen embrittlement characteristics and mechanism of natural gas-hydrogen transportation pipeline steels. Mater. Res. Express 2022, 9, 046512. [Google Scholar] [CrossRef]
- Thomas, A.; Szpunar, J.A. Hydrogen diffusion and trapping in X70 pipeline steel. Int. J. Hydrogen Energy 2020, 45, 2390–2404. [Google Scholar] [CrossRef]
- Du, M.-H.; Biswas, K. Anionic and hidden hydrogen in ZnO. Phys. Rev. Lett. 2011, 106, 115502. [Google Scholar] [CrossRef] [PubMed]
- King, P.; Lichti, R.; Celebi, Y.; Gil, J.; Vilão, R.; Alberto, H.; Duarte, J.P.; Payne, D.; Egdell, R.; McKenzie, I. Shallow donor state of hydrogen in In2O3 and SnO2: Implications for conductivity in transparent conducting oxides. Phys. Rev. B 2009, 80, 081201. [Google Scholar] [CrossRef]
- Oo, W.H.; Tabatabaei, S.; McCluskey, M.; Varley, J.; Janotti, A.; Van de Walle, C. Hydrogen donors in SnO2 studied by infrared spectroscopy and first-principles calculations. Phys. Rev. B 2010, 82, 193201. [Google Scholar] [CrossRef]
- Jiraroj, T.; Fongkaew, I.; Singh, D.J.; Du, M.-H.; Limpijumnong, S. Identification of hydrogen defects in SrTiO3 by first-principles local vibration mode calculations. Phys. Rev. B 2012, 85, 125205. [Google Scholar] [CrossRef]
- Ramírez, R.; Colera, I.; González, R.; Chen, Y.; Kokta, M. Hydrogen-isotope transport induced by an electric field in α-Al2O3 single crystals. Phys. Rev. B 2004, 69, 014302. [Google Scholar] [CrossRef]
- Louthan, M., Jr.; Caskey, G., Jr.; Donovan, J.; Rawl, D., Jr. Hydrogen embrittlement of metals. Mater. Sci. Eng. 1972, 10, 357–368. [Google Scholar] [CrossRef]
- Oriani, R. Hydrogen embrittlement of steels. Annu. Rev. Mater. Sci. 1978, 8, 327–357. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, Y.; Yang, C.; Hu, H. Fracture strain model for hydrogen embrittlement based on hydrogen enhanced localized plasticity mechanism. Int. J. Hydrogen Energy 2020, 45, 25541–25554. [Google Scholar] [CrossRef]
- Liang, T.; Kang, H.; Zhong, W.; Bian, H.; Zhao, J. Impact of surface adsorbed gases on hydrogen diffusion into Pd (100) subsurface from first principles. Appl. Surf. Sci. 2019, 473, 476–485. [Google Scholar] [CrossRef]
- Ohtani, E. Hydration and dehydration in Earth’s interior. Annu. Rev. Earth Planet. Sci. 2021, 49, 253–278. [Google Scholar] [CrossRef]
- Karato, S.-I.; Paterson, M.S.; FitzGerald, J.D. Rheology of synthetic olivine aggregates: Influence of grain size and water. J. Geophys. Res. Solid Earth 1986, 91, 8151–8176. [Google Scholar] [CrossRef]
- Karato, S.-I. Effects of water on seismic wave velocities in the upper mantle. Proc. Jpn. Acad. Ser. B 1995, 71, 61–66. [Google Scholar] [CrossRef]
- Ohtani, E.; Litasov, K.D. The Effect of Water on Mantle Phase Transitions. Rev. Mineral. Geochem. 2006, 62, 397–420. [Google Scholar] [CrossRef]
- Peng, Y.; Deng, J. Hydrogen diffusion in the lower mantle revealed by machine learning potentials. J. Geophys. Res. Solid Earth 2024, 129, e2023JB028333. [Google Scholar] [CrossRef]
- Karato, S.-I. The role of hydrogen in the electrical conductivity of the upper mantle. Nature 1990, 347, 272–273. [Google Scholar] [CrossRef]
- Duan, Y.; Sun, N.; Wang, S.; Li, X.; Guo, X.; Ni, H.; Prakapenka, V.B.; Mao, Z. Phase stability and thermal equation of state of δ-AlOOH: Implication for water transportation to the Deep Lower Mantle. Earth Planet. Sci. Lett. 2018, 494, 92–98. [Google Scholar] [CrossRef]
- Wunder, B.; Rubie, D.C.; Ross, C.R.; Medenbach, O.; Seifert, F.; Schreyer, W. Synthesis, stability, and properties of Al2SiO4(OH)2: A fully hydrated analogue of topaz. Am. Mineral. 1993, 78, 285–297. [Google Scholar]
- Yoshino, T.; Baker, E.; Duffey, K. Fate of water in subducted hydrous sediments deduced from stability fields of FeOOH and AlOOH up to 20 GPa. Phys. Earth Planet. Inter. 2019, 294, 106295. [Google Scholar] [CrossRef]
- Pawley, A.R. The pressure and temperature stability limits of lawsonite: Implications for H2O recycling in subduction zones. Contrib. Mineral. Petrol. 1994, 118, 99–108. [Google Scholar] [CrossRef]
- Ono, S. High temperature stability limit of phase egg, AlSiO3(OH). Contrib. Mineral. Petrol. 1999, 137, 83–89. [Google Scholar] [CrossRef]
- Green, D.H.; Hibberson, W.O.; Jaques, A.L. Petrogenesis of Mid-Ocean Ridge Basalts; Academic Press: London, UK, 1979; pp. 265–299. [Google Scholar]
- Sun, S.-S. Chemical composition and origin of the Earth’s primitive mantle. Geochim. Cosmochim. Acta 1982, 46, 179–192. [Google Scholar] [CrossRef]
- Liu, Z.; Nishi, M.; Ishii, T.; Fei, H.; Miyajima, N.; Ballaran, T.B.; Ohfuji, H.; Sakai, T.; Wang, L.; Shcheka, S. Phase relations in the system MgSiO3-Al2O3 up to 2300 K at lower mantle pressures. J. Geophys. Res. Solid Earth 2017, 122, 7775–7788. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, W.; Li, L.; Yu, Y.; Mao, Z. High-pressure single-crystal elasticity of corundum: Implication for multiple seismic structure of 660-km discontinuity. Phys. Earth Planet. Inter. 2024, 346, 107134. [Google Scholar] [CrossRef]
- Hutchison, M.T.; Hursthouse, M.; Light, M. Mineral inclusions in diamonds: Associations and chemical distinctions around the 670-km discontinuity. Contrib. Mineral. Petrol. 2001, 142, 119–126. [Google Scholar] [CrossRef]
- Hutchison, M.T.; Nixon, P.H.; Harley, S.L. Corundum inclusions in diamonds—Discriminatory criteria and a corundum compositional dataset. Lithos 2004, 77, 273–286. [Google Scholar] [CrossRef]
- Kato, J.; Hirose, K.; Ozawa, H.; Ohishi, Y. High-pressure experiments on phase transition boundaries between corundum, Rh2O3(II)-and CaIrO3-type structures in Al2O3. Am. Mineral. 2013, 98, 335–339. [Google Scholar] [CrossRef]
- Pan, X.-D.; Li, X.-C.; Wang, J.; Xu, B.-C.; Lyu, Y.-M.; Xu, Y.-P.; Zhao, X.; Zhou, H.-S.; Luo, G.-N. First-principles insight of hydrogen dissolution and diffusion properties in γ-Al2O3. J. Nucl. Mater. 2023, 574, 154156. [Google Scholar] [CrossRef]
- Pan, X.-D.; Xu, Y.-P.; Lu, T.; Lyu, Y.-M.; Zhou, H.-S.; Yang, Z.-S.; Niu, G.-J.; Li, X.-C.; Gao, F.; Luo, G.-N. First-principles study on the dissolution and diffusion properties of hydrogen in α-Al2O3. Ceram. Int. 2021, 47, 5699–5707. [Google Scholar] [CrossRef]
- El-Aiat, M.M.; Kröger, F.A. Hydrogen donors in α-Al2O3. J. Appl. Phys. 1982, 53, 3658–3667. [Google Scholar] [CrossRef]
- Henkelman, G.; Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113, 9978–9985. [Google Scholar] [CrossRef]
- Henkelman, G.; Uberuaga, B.P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 990–9904. [Google Scholar] [CrossRef]
- Vineyard, G.H. Frequency factors and isotope effects in solid state rate processes. J. Phys. Chem. Solids 1957, 3, 121–127. [Google Scholar] [CrossRef]
- Wert, C.; Zener, C. Interstitial atomic diffusion coefficients. Phys. Rev. 1949, 76, 1169. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558. [Google Scholar] [CrossRef] [PubMed]
- Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Wallin, E.; Andersson, J.M.; Münger, E.P.; Chirita, V.; Helmersson, U. Ab initio studies of Al, O, and O2 adsorption on α-Al2O3(0001) surfaces. Phys. Rev. B 2006, 74, 125409. [Google Scholar] [CrossRef]
- Xiang, X.; Zhang, G.; Yang, F.; Peng, X.; Tang, T.; Shi, Y.; Wang, X. An insight to the role of Cr in the process of intrinsic point defects in α-Al2O3. Phys. Chem. Chem. Phys. 2016, 18, 6734–6741. [Google Scholar] [CrossRef] [PubMed]
- Somjit, V.; Yildiz, B. Doping α-Al2O3 to reduce its hydrogen permeability: Thermodynamic assessment of hydrogen defects and solubility from first principles. Acta Mater. 2019, 169, 172–183. [Google Scholar] [CrossRef]
- Sanville, E.; Kenny, S.D.; Smith, R.; Henkelman, G. Improved grid-based algorithm for Bader charge allocation. J. Comput. Chem. 2007, 28, 899–908. [Google Scholar] [CrossRef] [PubMed]
- Belonoshko, A.B.; Rosengren, A.; Dong, Q.; Hultquist, G.; Leygraf, C. First-principles study of hydrogen diffusion in α-Al2O3 and liquid alumina. Phys. Rev. B 2004, 69, 024302. [Google Scholar] [CrossRef]
- Mao, W.; Chikada, T.; Shimura, K.; Suzuki, A.; Terai, T. Energetics and diffusion of hydrogen in α-Al2O3 and Er2O3. Fusion Eng. Des. 2013, 88, 2646–2649. [Google Scholar] [CrossRef]
- Yang, K.; Tao, X.; Zeng, Z.; Wang, X. Effects of pressure on hydrogen diffusion behaviors in MgO. Phys. Chem. Chem. Phys. 2023, 25, 19824–19833. [Google Scholar] [CrossRef] [PubMed]
- Fowler, J.D.; Chandra, D.; Elleman, T.S.; Payne, A.W.; Verghese, K. Tritium Diffusion in Al2O3 and BeO. J. Am. Ceram. Soc. 1977, 60, 155–161. [Google Scholar] [CrossRef]
- Kronenberg, A.K.; Castaing, J.; Mitchell, T.E.; Kirby, S.H. Hydrogen defects in α-Al2O3 and water weakening of sapphire and alumina ceramics between 600 and 1000 °C—I. Infrared characterization of defects. Acta Mater. 2000, 48, 1481–1494. [Google Scholar] [CrossRef]
- Ishii, T.; Criniti, G.; Wang, X.; Glazyrin, K.; Ballaran, T.B. Synthesis and structural analysis of CaFe2O4-type single crystals in the NaAlSiO4-MgAl2O4-Fe3O4 system. Am. Mineral. 2023, 108, 217–221. [Google Scholar] [CrossRef]
- Litasov, K.; Ohtani, E. The solidus of carbonated eclogite in the system CaO–Al2O3–MgO–SiO2–Na2O–CO2 to 32GPa and carbonatite liquid in the deep mantle. Earth Planet. Sci. Lett. 2010, 295, 115–126. [Google Scholar] [CrossRef]
- Miyajima, N.; Fujino, K.; Funamori, N.; Kondo, T.; Yagi, T. Garnet-perovskite transformation under conditions of the Earth’s lower mantle: An analytical transmission electron microscopy study. Phys. Earth Planet. Inter. 1999, 116, 117–131. [Google Scholar] [CrossRef]
- Miyajima, N.; Yagi, T.; Hirose, K.; Kondo, T.; Fujino, K.; Miura, H. Potential host phase of aluminum and potassium in the Earth’s lower mantle. Am. Mineral. 2001, 86, 740–746. [Google Scholar] [CrossRef]
- Saikia, A.; Frost, D.J.; Rubie, D.C. Splitting of the 520-Kilometer Seismic Discontinuity and Chemical Heterogeneity in the Mantle. Science 2008, 319, 1515–1518. [Google Scholar] [CrossRef] [PubMed]
- Ishii, T.; Kojitani, H.; Akaogi, M. Phase relations of harzburgite and MORB up to the uppermost lower mantle conditions: Precise comparison with pyrolite by multisample cell high-pressure experiments with implication to dynamics of subducted slabs. J. Geophys. Res. Solid Earth 2019, 124, 3491–3507. [Google Scholar] [CrossRef]
- Irifune, T.; Ringwood, A. Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600–800 km in the mantle. Earth Planet. Sci. Lett. 1993, 117, 101–110. [Google Scholar] [CrossRef]
- Ricolleau, A.; Perrillat, J.P.; Fiquet, G.; Daniel, I.; Matas, J.; Addad, A.; Menguy, N.; Cardon, H.; Mezouar, M.; Guignot, N. Phase relations and equation of state of a natural MORB: Implications for the density profile of subducted oceanic crust in the Earth’s lower mantle. J. Geophys. Res. Solid Earth 2010, 115, B08202. [Google Scholar] [CrossRef]
- Liu, Z.; Irifune, T.; Nishi, M.; Tange, Y.; Arimoto, T.; Shinmei, T. Phase relations in the system MgSiO3–Al2O3 up to 52 GPa and 2000 K. Phys. Earth Planet. Inter. 2016, 257, 18–27. [Google Scholar] [CrossRef]
- Ohtani, E. Hydrous minerals and the storage of water in the deep mantle. Chem. Geol. 2015, 418, 6–15. [Google Scholar] [CrossRef]
- Hallis, L.J.; Huss, G.R.; Nagashima, K.; Taylor, G.J.; Halldórsson, S.A.; Hilton, D.R.; Mottl, M.J.; Meech, K.J. Evidence for primordial water in Earth’s deep mantle. Science 2015, 350, 795–797. [Google Scholar] [CrossRef] [PubMed]
- Hae, R.; Ohtani, E.; Kubo, T.; Koyama, T.; Utada, H. Hydrogen diffusivity in wadsleyite and water distribution in the mantle transition zone. Earth Planet. Sci. Lett. 2006, 243, 141–148. [Google Scholar] [CrossRef]
- Sun, W.; Yoshino, T.; Sakamoto, N.; Yurimoto, H. Hydrogen self-diffusivity in single crystal ringwoodite: Implications for water content and distribution in the mantle transition zone. Geophys. Res. Lett. 2015, 42, 6582–6589. [Google Scholar] [CrossRef]
- Zhou, W.-Y.; Hao, M.; Zhang, J.S.; Chen, B.; Wang, R.; Schmandt, B. Constraining composition and temperature variations in the mantle transition zone. Nat. Commun. 2022, 13, 1094. [Google Scholar] [CrossRef] [PubMed]
- Katsura, T.; Yoneda, A.; Yamazaki, D.; Yoshino, T.; Ito, E. Adiabatic temperature profile in the mantle. Phys. Earth Planet. Inter. 2010, 183, 212–218. [Google Scholar] [CrossRef]
- Holzapfel, C.; Rubie, D.C.; Frost, D.J.; Langenhorst, F. Fe-Mg interdiffusion in (Mg, Fe) SiO3 perovskite and lower mantle reequilibration. Science 2005, 309, 1707–1710. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.W.; Houseman, G.A.; Buiter, S.; McCaffrey, K.J.; Doré, A.G. Fifty years of the Wilson Cycle concept in plate tectonics: An overview. Geol. Soc. 2019, 470, 1–17. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, S.-F.; Li, L.; Dong, X.; Li, X.-W.; Yuan, M.-W.; Li, S.-R. Effects of Pressure on Hydrogen Diffusion Behaviors in Corundum. Crystals 2025, 15, 672. https://doi.org/10.3390/cryst15080672
Yan S-F, Li L, Dong X, Li X-W, Yuan M-W, Li S-R. Effects of Pressure on Hydrogen Diffusion Behaviors in Corundum. Crystals. 2025; 15(8):672. https://doi.org/10.3390/cryst15080672
Chicago/Turabian StyleYan, Shun-Feng, Lin Li, Xiao Dong, Xiao-Wei Li, Mao-Wen Yuan, and Sheng-Rong Li. 2025. "Effects of Pressure on Hydrogen Diffusion Behaviors in Corundum" Crystals 15, no. 8: 672. https://doi.org/10.3390/cryst15080672
APA StyleYan, S.-F., Li, L., Dong, X., Li, X.-W., Yuan, M.-W., & Li, S.-R. (2025). Effects of Pressure on Hydrogen Diffusion Behaviors in Corundum. Crystals, 15(8), 672. https://doi.org/10.3390/cryst15080672