Modeling Fatigue Data of Complex Metallic Alloys Using a Generalized Student’s t-Birnbaum–Saunders Family of Lifetime Models: A Comparative Study with Applications
Abstract
:1. Introduction
2. A Generalized Student’s t-Birnbaum–Saunders Distribution
3. Estimation Procedures
- For to by 1:
- (a)
- Determine the estimators of the model parameters and by optimizing an objective function proposed in this section using suitable initial values;
- (b)
- Compete the value of the optimized objective function;
- Using a convergence criterion, choose the value of that maximizes the objective function if the estimators are obtained by solving a maximization problem; otherwise, choose the value of that minimizes the objective function if the estimators are obtained by solving a minimization problem. For this study, the considered convergence criterion is given by:
3.1. Maximum Likelihood Estimation
3.2. Least-Squares Estimations
3.3. Maximum Produce of Spacings Estimation
3.4. Minimum Distance Estimations
4. Applications
4.1. Goodness-of-Fit Evaluation
4.2. Estimation Efficiency Assessment
5. Monte Carlo Simulation Outcomes
- The estimators of behave similarly for small values of . As the value of starts to increase, both MLE and MPSE of perform better than the remaining estimation procedures; nevertheless, when the value of surges, some of the other estimation methods provide better estimates for .
- The MLEs of and are less efficient than the other estimators for small values of ; however, once the value of increases, the methods behave similarly, especially when the sample size is large enough. MLEs, MPSEs, and ADEs of and surpass the other estimates for larger values of in terms of RMSEs.
- For the goodness-of-fit measurements and , MLEs performed well compared to the remaining estimators for small values of , while MLEs, MPSEs, and ADEs slightly did not perform well for large values of unless the sample size is large enough.
- Overall, all methods behave similarly when the sample size is large enough as expected in terms of estimation efficiency and goodness-of-fit.
6. Conclusions
- A generalization of the conventional two-parameter BS distribution was considered. The model of interest, known as the GTBS distribution, extends the classical BS family by incorporating a shape parameter and heavy-tailed behavior via a Student’s t kernel.
- The model parameters were estimated using seven frequentist methods, including maximum likelihood, least squares, and spacing- and distance-based approaches.
- The validity of the model and its sub-models was verified using real fatigue data. Specifically, two real fatigue datasets were analyzed, and the GTBS model provided superior goodness-of-fit compared to its sub-models, as evidenced by bootstrapped KS, AD, and CVM statistics. Nevertheless, the GTBS model is expected to perform even better when the sample size is sufficiently large.
- In addition to the practical applications, estimation efficiency was demonstrated through Monte Carlo simulations. The results showed that the GTBS model, particularly under the MLE and MPSE methods, performs well in terms of RMSE and goodness-of-fit metrics across a range of parameter settings and sample sizes.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Mathematical Derivatives
Appendix A.1. First-Order Derivatives of the CDF
Appendix A.2. First-Order Derivatives of the Log-Likelihood Function
References
- Ghofrani, F.; Pathak, A.; Mohammadi, R.; Aref, A.; He, Q. Predicting rail defect frequency: An integrated approach using fatigue modeling and data analytics. Comput. Aided Civ. Infrastruct. Eng. 2019, 35, 101–115. [Google Scholar] [CrossRef]
- Gary Harlow, D. Fatigue Life Distribution Estimation. In Reliability and Statistical Computing; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 1–16. [Google Scholar] [CrossRef]
- Wu, Y.L.; Zhu, S.P.; Liao, D.; Correia, J.A.F.O.; Wang, Q. Probabilistic fatigue modeling of notched components under size effect using modified energy field intensity approach. Mech. Adv. Mater. Struct. 2021, 29, 6379–6389. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, J.; Jiang, W. Tensile fatigue behaviour and life distribution model of the pultruded fibre reinforced composites. Polym. Polym. Compos. 2022, 30, 096739112210837. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Y. Fatigue modeling using neural networks: A comprehensive review. Fatigue Fract. Eng. Mater. Struct. 2022, 45, 945–979. [Google Scholar] [CrossRef]
- Gu, T.; Stopka, K.S.; Xu, C.; McDowell, D.L. Modeling the statistical distribution of fatigue crack formation lifetime in large volumes of polycrystalline microstructures. Acta Mater. 2023, 247, 118715. [Google Scholar] [CrossRef]
- Cameron, Z.A.; Krantz, T.L. Statistical distribution of gear surface fatigue lives at high reliability. Int. J. Fatigue 2023, 167, 107350. [Google Scholar] [CrossRef]
- Fernández-Canteli, A.; Castillo, E.; Díaz-Salamanca, D.; Muñiz-Calvente, M.; Seitl, S. Advances in low cycle fatigue probabilistic modeling. Theor. Appl. Fract. Mech. 2024, 133, 104611. [Google Scholar] [CrossRef]
- Schijve, J. A normal distribution or a weibull distribution for fatigue lives. Fatigue Fract. Eng. Mater. Struct. 1993, 16, 851–859. [Google Scholar] [CrossRef]
- Pascual, F.; Meeker, W. Analysis of Fatigue Data with Runouts Based on a Model with Nonconstant Standard Deviation and a Fatigue Limit Parameter. J. Test. Eval. 1997, 25, 292–301. [Google Scholar] [CrossRef]
- Pascual, F.G.; Meeker, W.Q. Estimating Fatigue Curves With the Random Fatigue-Limit Model. Technometrics 1999, 41, 277–289. [Google Scholar] [CrossRef]
- Ryan, K.J. Estimating Expected Information Gains for Experimental Designs with Application to the Random Fatigue-Limit Model. J. Comput. Graph. Stat. 2003, 12, 585–603. [Google Scholar] [CrossRef]
- Babuška, I.; Sawlan, Z.; Scavino, M.; Szabó, B.; Tempone, R. Bayesian inference and model comparison for metallic fatigue data. Comput. Methods Appl. Mech. Eng. 2016, 304, 171–196. [Google Scholar] [CrossRef]
- Zou, Q.; Wen, J. Bayesian model averaging for probabilistic S-N curves with probability distribution model form uncertainty. Int. J. Fatigue 2023, 177, 107955. [Google Scholar] [CrossRef]
- Birnbaum, Z.; Saunders, S. A new family of life distributions. J. Appl. Probab. 1969, 6, 319–327. [Google Scholar] [CrossRef]
- Birnbaum, Z.; Saunders, S. Estimation for a family of life distributions with applications to fatigue. J. Appl. Probab. 1969, 6, 328–347. [Google Scholar] [CrossRef]
- Desmond, A. Stochastic models of failure in random environments. Can. J. Stat. 1985, 13, 171–183. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Kundu, D. Birnbaum-Saunders distribution: A review of models, analysis, and applications. Appl. Stoch. Model. Bus. Ind. 2018, 35, 4–49. [Google Scholar] [CrossRef]
- Bdair, O.M. Inference for Two-Parameter Birnbaum–Saunders Distribution Based on Type-II Censored Data with Application to the Fatigue Life of Aluminum Coupon Cuts. Mathematics 2025, 13, 590. [Google Scholar] [CrossRef]
- Park, C.; Wang, M. A Goodness-of-Fit Test for the Birnbaum-Saunders Distribution Based on the Probability Plot. In Reliability Analysis and Maintenance Optimization of Complex Systems; Springer Nature: Cham, Switzerland, 2025; pp. 345–359. [Google Scholar] [CrossRef]
- Díaz-García, J.A.; Leiva-Sánchez, V. A new family of life distributions based on the elliptically contoured distributions. J. Stat. Plan. Inference 2005, 128, 445–457. [Google Scholar] [CrossRef]
- Díaz-García, J.A.; Leiva-Sánchez, V. Erratum to “A new family of life distributions based on the elliptically contoured distributions”. J. Stat. Plan. Inference 2007, 137, 1512–1513. [Google Scholar] [CrossRef]
- Barros, M.; Paula, G.A.; Leiva, V. A new class of survival regression models with heavy-tailed errors: Robustness and diagnostics. Lifetime Data Anal. 2008, 14, 316–332. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, N.; Leiva, V.; Sanhueza, A.; Vilca, F. Estimation in the Birnbaum-Saunders distribution based on scale-mixture of normals and the EM-algorithm. SORT-Stat. Oper. Res. Trans. 2010, 33, 171–192. [Google Scholar]
- Alosaimi, B.S.; Alam, F.M.; Baaqeel, H.M. Modeling Air Pollution Data Using a Generalized Birnbaum-Saunders Distribution with Different Estimation Procedures. In Mathematical Modeling in Physical Sciences; Springer Nature: Cham, Switzerland, 2024; pp. 587–618. [Google Scholar] [CrossRef]
- ArruVé, J.; Arellano-Valle, R.B.; Gómez, H.W.; Leiva, V. On a new type of Birnbaum-Saunders models and its inference and application to fatigue data. J. Appl. Stat. 2019, 47, 2690–2710. [Google Scholar] [CrossRef]
- Saulo, H.; Leao, J.; Leiva, V.; Vila, R.; Tomazella, V. A bivariate fatigue-life regression model and its application to fracture of metallic tools. Braz. J. Probab. Stat. 2021, 35, 119–137. [Google Scholar] [CrossRef]
- Patil, S.M.; Kulkarni, H.V. Analysis of medians under two-way model with and without interaction for Birnbaum–Saunders distributed response. J. Appl. Stat. 2022, 50, 2717–2738. [Google Scholar] [CrossRef]
- Basu, S.; Kundu, D. Model misspecification of Log-Normal and Birnbaum-Saunders distributions. Commun. Stat. Simul. Comput. 2023, 54, 1125–1145. [Google Scholar] [CrossRef]
- Sha, N. Classical and Bayesian inference for an extended generalized Birnbaum-Saunders distribution. Commun. Stat. Simul. Comput. 2023, 52, 5615–5632. [Google Scholar] [CrossRef]
- Jayalath, K.P. Improved Bayesian Inferences for Right-Censored Birnbaum–Saunders Data. Mathematics 2024, 12, 874. [Google Scholar] [CrossRef]
- Sawlan, Z.; Scavino, M.; Tempone, R. Modeling Metallic Fatigue Data Using the Birnbaum–Saunders Distribution. Metals 2024, 14, 508. [Google Scholar] [CrossRef]
- Busababodhin, P.; Phoophiwfa, T.; Volodin, A.; Suraphee, S. On the Asymptotic Normality of the Method of Moments Estimators for the Birnbaum–Saunders Distribution with a New Parametrization. Mathematics 2025, 13, 636. [Google Scholar] [CrossRef]
- Gupta, R.D.; Kundu, D. Generalized exponential distribution: Different method of estimations. J. Stat. Comput. Simul. 2001, 69, 315–337. [Google Scholar] [CrossRef]
- Alkasasbeh, M.R.; Raqab, M.Z. Estimation of the generalized logistic distribution parameters: Comparative study. Stat. Methodol. 2009, 6, 262–279. [Google Scholar] [CrossRef]
- Mazucheli, J.; Louzada, F.; Ghitany, M. Comparison of estimation methods for the parameters of the weighted Lindley distribution. Appl. Math. Comput. 2013, 220, 463–471. [Google Scholar] [CrossRef]
- do Espirito Santo, A.; Mazucheli, J. Comparison of estimation methods for the Marshall–Olkin extended Lindley distribution. J. Stat. Comput. Simul. 2014, 85, 3437–3450. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Alam, F.M.A. Maximum likelihood estimation of the parameters of Student’s t Birnbaum-Saunders distribution: A comparative study. Commun. Stat. Simul. Comput. 2019, 51, 793–822. [Google Scholar] [CrossRef]
- Nassar, M.; Okasha, H.; Albassam, M. E-Bayesian estimation and associated properties of simple step–stress model for exponential distribution based on type-II censoring. Qual. Reliab. Eng. Int. 2020, 37, 997–1016. [Google Scholar] [CrossRef]
- Alam, F.M.A.; Nassar, M. On Modeling Concrete Compressive Strength Data Using Laplace Birnbaum-Saunders Distribution Assuming Contaminated Information. Crystals 2021, 11, 830. [Google Scholar] [CrossRef]
- Alam, F.M.A.; Almalki, A.M. The hazard rate function of the logistic Birnbaum-Saunders distribution: Behavior, associated inference, and application. J. King Saud Univ. Sci. 2021, 33, 101580. [Google Scholar] [CrossRef]
- Moloy, D.J.; Ali, M.A.; Alam, F.M.A. Modeling Climate data using the Quartic Transmuted Weibull Distribution and Different Estimation Methods. Pak. J. Stat. Oper. Res. 2023, 19, 649–669. [Google Scholar] [CrossRef]
- Alam, F.M.A. On Modeling X-Ray Diffraction Intensity Using Heavy-Tailed Probability Distributions: A Comparative Study. Crystals 2025, 15, 188. [Google Scholar] [CrossRef]
- Johnson, N.L.; Kotz, S.; Balakrishnan, N. Continuous Univariate Distributions, Volume 1, 2nd Edition; Wiley: Hoboken, NJ, USA, 1994; Available online: https://www.wiley.com/en-us/Continuous+Univariate+Distributions%2C+Volume+1%2C+2nd+Edition-p-9780471584957 (accessed on 13 June 2025).
- Johnson, N.L.; Kotz, S.; Balakrishnan, N. Continuous Univariate Distributions, Volume 2, 2nd Edition; Wiley: Hoboken, NJ, USA, 1995; Available online: https://www.wiley.com/en-us/Continuous+Univariate+Distributions%2C+Volume+2%2C+2nd+Edition-p-9780471584940 (accessed on 13 June 2025).
- Swain, J.; Venkatraman, S.; Wilson, J. Least squares estimation of distribution function in Johnson’s translation system. J. Stat. Comput. Simul. 1988, 29, 271–297. [Google Scholar] [CrossRef]
- Arnold, B.C.; Balakrishnan, N.; Nagaraja, H.N. A First Course in Order Statistics; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2008. [Google Scholar] [CrossRef]
- Cheng, R.C.H.; Amin, N.A.K. Maximum Product-of-Spacings Estimation with Applications to the Lognormal Distribution; Technical Report; Department of Mathematics, University of Wales IST: Cardiff, UK, 1979. [Google Scholar]
- Cheng, R.C.H.; Amin, N.A.K. Estimating Parameters in Continuous Univariate Distributions with a Shifted Origin. J. R. Stat. Soc. Ser. B Stat. Methodol. 1983, 45, 394–403. [Google Scholar] [CrossRef]
- Ranneby, B. The Maximum Spacing Method. An Estimation Method Related to the Maximum Likelihood Method. Scand. J. Stat. 1984, 11, 93–112. [Google Scholar]
- Ghosh, K.; Jammalamadaka, S. A general estimation method using spacings. J. Stat. Plan. Inference 2001, 93, 71–82. [Google Scholar] [CrossRef]
- Murage, P.; Mung’atu, J.; Odero, E. Optimal Threshold Determination for the Maximum Product of Spacing Methodology with Ties for Extreme Events. Open J. Model. Simul. 2019, 7, 149–168. [Google Scholar] [CrossRef]
- Toasa Caiza, P.D.; Ummenhofer, T. Consideration of the runouts and their subsequent retests into S-N curves modelling based on a three-parameter Weibull distribution. Int. J. Fatigue 2018, 106, 70–80. [Google Scholar] [CrossRef]
- Fakoor, H.; Alizadeh Kaklar, J. A modification in Weibull parameters to achieve a more accurate probability distribution function in fatigue applications. Sci. Rep. 2023, 13, 17537. [Google Scholar] [CrossRef]
- Ma, T.H.; Chang, L.; Guo, S.; Kong, L.R.; He, X.H.; Zhou, C.Y. Comparison of multiaxial low cycle fatigue behavior of CP-Ti under strain-controlled mode at different multiaxial strain ratios. Int. J. Fatigue 2020, 140, 105818. [Google Scholar] [CrossRef]
- Chen, S.; Bai, Y.; Zhou, X.; Yang, A. A deep learning dataset for metal multiaxial fatigue life prediction. Sci. Data 2024, 11, 1027. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Liu, D.C.; Nocedal, J. On the limited memory BFGS method for large scale optimization. Math. Program. 1989, 45, 503–528. [Google Scholar] [CrossRef]
- Johnson, S.G. The NLopt Nonlinear-Optimization Package. 2008. Available online: https://nlopt.readthedocs.io/en/latest/Citing_NLopt/ (accessed on 13 June 2025).
- Self, S.G.; Liang, K.Y. Asymptotic Properties of Maximum Likelihood Estimators and Likelihood Ratio Tests under Nonstandard Conditions. J. Am. Stat. Assoc. 1987, 82, 605–610. [Google Scholar] [CrossRef]
- Casella, G.; Berger, R.L. Statistical Inference, 2nd ed.; Duxbury Press: Boston, MA, USA, 2002. [Google Scholar]
- Kolmogorov, A. Sulla determinazione empirica di una legge di distribuzione. G. dell’Istituto Ital. Attuari 1933, 4, 83–91. [Google Scholar]
- Smirnov, N. Table for Estimating the Goodness of Fit of Empirical Distributions. Ann. Math. Stat. 1948, 19, 279–281. [Google Scholar] [CrossRef]
- Anderson, T.W.; Darling, D.A. Asymptotic Theory of Certain “Goodness of Fit” Criteria Based on Stochastic Processes. Ann. Math. Stat. 1952, 23, 193–212. [Google Scholar] [CrossRef]
- Cramér, H. On the Composition of Elementary Errors. Scand. Actuar. J. 1928, 1928, 13–74. [Google Scholar] [CrossRef]
- von Mises, R. Wahrscheinlichkeit, Statistik und Wahrheit; Julius Springer: Vienna, Austria, 1928. [Google Scholar]
- Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; Chapman and Hall/CRC: Boca Raton, FL, USA, 1994. [Google Scholar]
- Davison, A.C.; Hinkley, D.V. Bootstrap Methods and Their Applications; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Chernick, M.R. Bootstrap Methods: A Guide for Practitioners and Researchers, 2nd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2008. [Google Scholar]
- Balakrishnan, N.; Cutler, C.D. Maximum Likelihood Estimation of Laplace Parameters Based on Type-II Censored Samples. In Statistical Theory and Applications; Springer: New York, NY, USA, 1996; pp. 145–151. [Google Scholar] [CrossRef]
- Han, J.; Kamber, M.; Pei, J. Data Mining: Concepts and Techniques; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar] [CrossRef]
Model | |
---|---|
Location-scale Cauchy BS distribution (CBS) | |
Location-scale BS distribution (BS) | |
Location-scale Student’s t BS distribution (TBS) | |
Generalized Cauchy BS distribution (GCBS) | |
Generalized BS distribution (GBS) |
Data | Minimum | Median | Maximum | MAD | ||
---|---|---|---|---|---|---|
SN | 2826.8 | 4561.35 | 6012.26 | 8054.585 | 12,006.4 | 2580.562 |
eN | 2.8512583 | 3.1126914 | 3.3909116 | 3.7833624 | 4.3296826 | 0.4767095 |
Model | KS | p-Value | AD | p-Value | CVM | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|---|
GTBS | 203.11 | 5595.92 | 1.2534 | 6 | 0.1084 | 0.9371 | 0.1687 | 0.9800 | 0.0251 | 0.9650 |
GCBS | 2156.48 | 3927.38 | 1.2208 | 1 * | 0.1206 | 0.8412 | 0.4357 | 0.6803 | 0.0605 | 0.6933 |
GBS | 203.11 | 5595.92 | 1.1335 | ∞ * | 0.1026 | 0.9600 | 0.1502 | 0.9960 | 0.0213 | 0.9930 |
TBS | 2705.21 | 2802.40 | * | 3 | 0.1464 | 0.4805 | 0.5549 | 0.3477 | 0.0749 | 0.3776 |
CBS | 2826.80 | 3138.20 | * | 1 * | 0.2312 | 0.0260 | 1.5333 | 0.0949 | 0.1584 | 0.0519 |
BS | 2395.51 | 2775.06 | * | ∞ * | 0.1794 | 0.2537 | 0.5999 | 0.2637 | 0.1104 | 0.2118 |
Model | KS | p-Value | AD | p-Value | CVM | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|---|
GTBS | 2.3208 | 1.0758 | 1.2843 | 20 | 0.1254 | 0.6194 | 0.2014 | 0.7882 | 0.0313 | 0.7353 |
GCBS | 2.8513 | 0.5525 | 0.5051 | 1 * | 0.2444 | 0.0310 | 1.2857 | 0.0170 | 0.1484 | 0.0420 |
GBS | 2.2840 | 1.1144 | 1.2921 | ∞ * | 0.1226 | 0.7143 | 0.1982 | 0.8392 | 0.0306 | 0.7982 |
TBS | 2.7853 | 0.5089 | * | 16 | 0.1654 | 0.3996 | 0.5644 | 0.2478 | 0.0913 | 0.2398 |
CBS | 2.8513 | 0.5521 | * | 1 * | 0.2460 | 0.0300 | 1.2960 | 0.0999 | 0.1515 | 0.0549 |
BS | 2.7745 | 0.5085 | * | ∞ * | 0.1748 | 0.4006 | 0.5960 | 0.2857 | 0.1014 | 0.2657 |
Model | JRE (%) | |||
---|---|---|---|---|
LSE | 2268.99 | 308.50 | 0.6619 | 95.2388 |
WLSE | 2079.67 | 529.08 | 0.5303 | 96.3884 |
MPSE | 1634.82 | 641.45 | 0.5106 | 84.1059 |
CVME | 2418.33 | 281.60 | 0.7406 | 99.7649 |
ADE | 2488.87 | 174.21 | 0.7881 | 98.4053 |
RADE | 2550.32 | 412.58 | 0.7846 | 109.4804 |
Model | JRE (%) | |||
---|---|---|---|---|
LSE | 1.1746 | 1.2281 | 1.3998 | 101.06 |
WLSE | 1.1207 | 1.1789 | 1.3209 | 96.22 |
MPSE | 1.0806 | 1.1184 | 1.4709 | 97.54 |
CVME | 1.2483 | 1.3001 | 1.8118 | 115.88 |
ADE | 1.0598 | 1.1130 | 1.4767 | 97.00 |
RADE | 1.1976 | 1.3149 | 1.7335 | 112.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, F.M.A.; Khalawi, F.; Daghistani, A.M. Modeling Fatigue Data of Complex Metallic Alloys Using a Generalized Student’s t-Birnbaum–Saunders Family of Lifetime Models: A Comparative Study with Applications. Crystals 2025, 15, 575. https://doi.org/10.3390/cryst15060575
Alam FMA, Khalawi F, Daghistani AM. Modeling Fatigue Data of Complex Metallic Alloys Using a Generalized Student’s t-Birnbaum–Saunders Family of Lifetime Models: A Comparative Study with Applications. Crystals. 2025; 15(6):575. https://doi.org/10.3390/cryst15060575
Chicago/Turabian StyleAlam, Farouq Mohammad A., Fouad Khalawi, and Abdulkader Monier Daghistani. 2025. "Modeling Fatigue Data of Complex Metallic Alloys Using a Generalized Student’s t-Birnbaum–Saunders Family of Lifetime Models: A Comparative Study with Applications" Crystals 15, no. 6: 575. https://doi.org/10.3390/cryst15060575
APA StyleAlam, F. M. A., Khalawi, F., & Daghistani, A. M. (2025). Modeling Fatigue Data of Complex Metallic Alloys Using a Generalized Student’s t-Birnbaum–Saunders Family of Lifetime Models: A Comparative Study with Applications. Crystals, 15(6), 575. https://doi.org/10.3390/cryst15060575