Preparation, Microstructure, and Properties of Solar Energy-Absorbing and -Storing Integrated Forsterite-Based Ceramics
Abstract
:1. Introduction
2. Experiment Procedures
2.1. Sample Preparation
2.2. Characterization
3. Results and Discussion
3.1. Physical Properties and Solar Absorptivity Analysis
3.2. Phase Composition Analysis
3.3. Microstructure Analysis
3.4. Thermal Shock Resistance Analysis
3.5. Thermophysical Properties Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ju, X.; Xu, C.; Hu, Y.; Han, X.; Wei, G.; Du, X. A review on the development of photovoltaic/concentrated solar power (PV-CSP) hybrid systems. Sol. Energy Mater. Sol. Cells 2017, 161, 305–327. [Google Scholar] [CrossRef]
- Li, J.; Lu, T.; Yi, X.; Hao, R.; Ai, Q.; Guo, Y.; An, M.; Wang, S.; He, X.; Li, Y. Concentrated solar power for a reliable expansion of energy systems with high renewable penetration considering seasonal balance. Renew. Energy 2024, 226, 120089. [Google Scholar] [CrossRef]
- Liu, H.; Wang, W.; Zhang, Y. Performance gap between thermochemical energy storage systems based on salt hydrates and materials. J. Clean. Prod. 2021, 313, 127908. [Google Scholar] [CrossRef]
- Zhao, Y.; Chang, Z.; Zhao, Y.; Yang, Q.; Liu, G.; Li, L. Performance comparison of three supercritical CO2 solar thermal power systems with compressed fluid and molten salt energy storage. Energy 2023, 282, 128807. [Google Scholar] [CrossRef]
- Guo, R.; Lei, D.; Liu, H.; Guo, Y.; Yin, H.; Lv, Y.; Wang, Z. Capacity configuration and economic analysis of integrated wind–solar–thermal–storage generation system based on concentrated solar power plant. Case Stud. Therm. Eng. 2024, 59, 104469. [Google Scholar] [CrossRef]
- Dinker, A.; Agarwal, M.; Agarwal, G. Heat storage materials, geometry and applications: A review. J. Energy Inst. 2017, 90, 1–11. [Google Scholar] [CrossRef]
- Mohamed, S.A.; Al-Sulaiman, F.A.; Ibrahim, N.I.; Zahir, H.; Al-Ahmed, A.; Saidur, R.; Yılbaş, B.S.; Sahin, A.Z. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems. Renew. Sustain. Energy Rev. 2017, 70, 1072–1089. [Google Scholar] [CrossRef]
- Xu, Q.; Liu, X.; Luo, Q.; Tian, Y.; Dang, C.; Yao, H.; Song, C.; Xuan, Y.; Zhao, J.; Ding, Y. Loofah-derived eco-friendly SiC ceramics for high-performance sunlight capture, thermal transport, and energy storage. Energy Storage Mater. 2022, 45, 786–795. [Google Scholar] [CrossRef]
- Liu, X.; Chen, M.; Xu, Q.; Gao, K.; Dang, C.; Li, P.; Luo, Q.; Zheng, H.; Song, C.; Tian, Y.; et al. Bamboo derived SiC ceramics-phase change composites for efficient, rapid, and compact solar thermal energy storage. Sol. Energy Mater. Sol. Cells 2022, 240, 111726. [Google Scholar] [CrossRef]
- Wu, J.; Yu, J.; Xu, X.; Liu, Y.; Zhang, Z.; Wei, P. Preparation and thermal shock resistance of anorthite solar thermal energy storage ceramics from magnesium slag. Ceram. Int. 2022, 48, 33604–33614. [Google Scholar] [CrossRef]
- Dong, H.; Liang, Y.; Nie, J.; Cai, M.; Ju, M.; Li, Z.; Wen, L.; Zhou, Y. Synthesis of forsterite with high strength and low acid solubility using magnesite tailings. Ceram. Int. 2023, 49, 13258–13264. [Google Scholar] [CrossRef]
- Jung, I.-H.; Decterov, S.A.; Pelton, A.D. Critical thermodynamic evaluation and optimization of the CaO–MgO–SiO2 system. J. Eur. Ceram. Soc. 2004, 25, 313–333. [Google Scholar] [CrossRef]
- Qi, X.; Qi, D.; Luo, X.; Wang, S.; Zhang, L.; Zhao, J.; You, J.; Liu, Y.; Zhou, Y.; Pan, Z. Fabrication and thermal shock behavior of periclase-forsterite aggregates with micro-nanometer dual-pore-size structures. Ceram. Int. 2023, 49, 1811–1819. [Google Scholar] [CrossRef]
- Laziri, K.; Djemli, A.; Redaoui, D.; Sahnoune, F.; Dhahri, E.; Hassan, S.; Saheb, N. Kinetics of formation, microstructure, and properties of monolithic forsterite (Mg2SiO4) produced through solid-state reaction of nano-powders of MgO and SiO2. Ceram. Int. 2024, 50, 45179–45188. [Google Scholar] [CrossRef]
- Sasikala, T.; Suma, M.; Mohanan, P.; Pavithran, C.; Sebastian, M. Forsterite-based ceramic–glass composites for substrate applications in microwave and millimeter wave communications. J. Alloys Compd. 2007, 461, 555–559. [Google Scholar] [CrossRef]
- Zhu, T.; Zhu, M.; Zhu, Y. Fabrication of forsterite scaffolds with photothermal-induced antibacterial activity by 3D printing and polymer-derived ceramics strategy. Ceram. Int. 2020, 46, 13607–13614. [Google Scholar] [CrossRef]
- Mohagheghiyan, K.; Mokhtari, H.; Kharaziha, M. Gelatin-coated mesoporous forsterite scaffold for bone tissue engineering. Ceram. Int. 2024, 50, 13526–13535. [Google Scholar] [CrossRef]
- Ramezani, A.; Emami, S.; Nemat, S. Effect of waste serpentine on the properties of basic insulating refractories. Ceram. Int. 2018, 44, 9269–9275. [Google Scholar] [CrossRef]
- Gu, F.; Peng, Z.; Zhang, Y.; Tang, H.; Ye, L.; Tian, W.; Liang, G.; Rao, M.; Li, G.; Jiang, T. Facile Route for Preparing Refractory Materials from Ferronickel Slag with Addition of Magnesia. ACS Sustain. Chem. Eng. 2018, 6, 4880–4889. [Google Scholar] [CrossRef]
- Acar, I. Sintering properties of olivine and its utilization potential as a refractory raw material: Mineralogical and microstructural investigations. Ceram. Int. 2020, 46, 28025–28034. [Google Scholar] [CrossRef]
- Nguyen, M.; Sokolář, R. Corrosion Resistance of Novel Fly Ash-Based Forsterite-Spinel Refractory Ceramics. Materials 2022, 15, 1363. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hu, Y.-H.; Wang, L.; Sun, W. Mg recovery from salt lake brine into forsterite refractory materials via precipitation–calcination process. Trans. Nonferrous Met. Soc. China 2024, 34, 694–708. [Google Scholar] [CrossRef]
- Wahsh, M.; Othman, A.; El-Aleem, S.A. The influence of nano-silica and zircon additions on the sintering and mechanical properties of in situ formed forsterite. J. Ind. Eng. Chem. 2014, 20, 3984–3988. [Google Scholar] [CrossRef]
- Kucuk, I.; Boyraz, T.; Gökçe, H.; Öveçoğlu, M.L. Thermomechanical properties of aluminium titanate (Al2TiO5)-reinforced forsterite (Mg2SiO4) ceramic composites. Ceram. Int. 2018, 44, 8277–8282. [Google Scholar] [CrossRef]
- Xu, X.; Cheng, T.; Wu, J.; Shen, Y.; Yu, J.; Shi, X. Microstructure and properties of forsterite-zirconia composite ceramics for solar thermal storage. Ceram. Int. 2024, 50, 25282–25292. [Google Scholar] [CrossRef]
- Wu, S.; Hou, Q.; Yu, J.; Wang, C.; Zhao, J.-L.; Wang, S.; Luo, X.; Qi, X. Sintering behavior and thermal shock resistance of MgO-Mg2SiO4 refractories by co-doped silica fume and quicklime. Ceram. Int. 2024, 50, 56060–56069. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, J.; Zhou, Y.; Xu, X.; Tian, K.; Liu, Y. Thermal shock resistance and oxidation resistance of MgAl2O4–Si3N4 ceramics for solar thermal absorber: The effects of TiO2 additive content. Ceram. Int. 2021, 47, 25081–25088. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, J.; Xu, X.; Shen, Y.; Qiu, S.; Zhang, D. Effects of Sm2O3 and TiO2 on the performance of MgAl2O4-Si3N4 ceramics for solar thermal absorber in concentrating solar power. Ceram. Int. 2024, 50, 44843–44851. [Google Scholar] [CrossRef]
- Wu, J.; Liu, Y.; Xu, X.; Liu, S.; Li, M.; Yin, Y. The microstructures and properties of Fe2O3 and TiO2 co-doped corundum ceramics for solar thermal absorbing materials. Ceram. Int. 2023, 49, 10765–10773. [Google Scholar] [CrossRef]
- Besisa, D.H.; Ewais, E.M.; Ahmed, Y.M. A comparative study of thermal conductivity and thermal emissivity of high temperature solar absorber of ZrO2/Fe2O3 and Al2O3/CuO ceramics. Ceram. Int. 2021, 47, 28252–28259. [Google Scholar] [CrossRef]
- Besisa, D.H.; Ewais, E.M.; Mohamed, H.H.; Besisa, N.; Mohamed, E.A. Thermal stress durability and optical characteristics of a promising solar air receiver based black alumina ceramics. Ceram. Int. 2023, 49, 20429–20436. [Google Scholar] [CrossRef]
- Pan, H.; Luo, F.; Feng, X.-Y.; Qing, Y.; Chen, Q.; Wang, C.-H.; Ren, Z.; Nan, H.; Wang, S.; Duan, S. Construction of compound interface in SiCf/mullite ceramic-matrix composites for enhanced mechanical and microwave absorbing performance. J. Eur. Ceram. Soc. 2023, 43, 4916–4926. [Google Scholar] [CrossRef]
- Chen, J.; Riaz, A.; Taheri, M.; Kumar, A.; Coventry, J.; Lipiński, W. Optical and radiative characterisation of alumina–silica based ceramic materials for high-temperature solar thermal applications. J. Quant. Spectrosc. Radiat. Transf. 2021, 272, 107754. [Google Scholar] [CrossRef]
- Xu, X.; Shen, Y.; Zhang, Z.; Wu, J.; Yu, J.; Zhou, Y. Influence of Fe2O3 on the absorptivity of in situ synthesized solar high-temperature absorbing and storing integrated mullite-based ceramics. Ceram. Int. 2024, 50, 27339–27348. [Google Scholar] [CrossRef]
- Welegergs, G.; Akoba, R.; Sacky, J.; Nuru, Z. Structural and optical properties of copper oxide (CuO) nanocoatings as selective solar absorber. Mater. Today Proc. 2021, 36, 509–513. [Google Scholar] [CrossRef]
- Ot, H.; Ozel, K.; Kutlu-Narin, E.; Serin, T.; Yildiz, A. Tailored key parameters of CuO thin films for emerging solar cells. J. Mater. Sci. Mater. Electron. 2024, 35, 1942. [Google Scholar] [CrossRef]
- El Aakib, H.; Rochdi, N.; Tchenka, A.; Pierson, J.-F.; Outzourhit, A. Copper oxide coatings deposited by reactive radio-frequency sputtering for solar absorber applications. Mater. Chem. Phys. 2023, 296, 127196. [Google Scholar] [CrossRef]
- Kiryakov, A.; Zatsepin, A.; Osipov, V. Optical properties of polyvalent iron ions and anti-site defects in transparent MgAl2O4 ceramics. J. Lumin. 2021, 239, 118390. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, L.; Huang, M.; Zheng, P.; Hou, Q.; Qi, X.; Li, R.; Chen, L.; Luo, X. Effects of different additives on properties of magnesium aluminate Spinel–Periclase castable. Ceram. Int. 2023, 49, 4412–4421. [Google Scholar] [CrossRef]
- Quan, Z.; Wang, Z.; Wang, X.; Liu, H.; Ma, Y. Effects of Sm2O3 addition on sintering behavior of pre-synthesized magnesia-rich magnesium aluminate spinel. J. Rare Earths 2021, 39, 1450–1454. [Google Scholar] [CrossRef]
- Xu, X.; Xu, X.; Wu, J.; Lao, X.; Zhang, Y.; Li, K. Effect of Sm2O3 on microstructure, thermal shock resistance and thermal conductivity of cordierite-mullite-corundum composite ceramics for solar heat transmission pipeline. Ceram. Int. 2016, 42, 13525–13534. [Google Scholar] [CrossRef]
- Zhao, K.; Ye, F.; Cheng, L.; Yang, J.; Chen, X. An overview of ultra-high temperature ceramic for thermal insulation: Structure and composition design with thermal conductivity regulation. J. Eur. Ceram. Soc. 2023, 43, 7241–7262. [Google Scholar] [CrossRef]
Raw Materials | SiO2 | Al2O3 | TiO2 | Fe2O3 | CaO | MgO | K2O | Na2O | I.L. | Total |
---|---|---|---|---|---|---|---|---|---|---|
Fused magnesia | 1.39 | 0.30 | 0.00 | 0.67 | 1.63 | 95.59 | 0.00 | 0.22 | 0.19 | 100 |
Quartz | 98.24 | 1.12 | 0.06 | 0.08 | 0.02 | 0.00 | 0.13 | 0.03 | 0.32 | 100 |
α-Al2O3 | 0.30 | 99.18 | 0.00 | 0.04 | 0.03 | 0.00 | 0.01 | 0.08 | 0.36 | 100 |
Sample | Fused Magnesia | Quartz | Total | α-Al2O3 | Sm2O3 | Fe2O3 | CuO |
---|---|---|---|---|---|---|---|
J0 | 59.10 | 40.90 | 100.00 | 30.00 | 7.00 | 0.00 | 0.00 |
J1 | 59.10 | 40.90 | 100.00 | 30.00 | 7.00 | 9.00 | 1.00 |
J2 | 59.10 | 40.90 | 100.00 | 30.00 | 7.00 | 8.00 | 2.00 |
J3 | 59.10 | 40.90 | 100.00 | 30.00 | 7.00 | 7.00 | 3.00 |
J4 | 59.10 | 40.90 | 100.00 | 30.00 | 7.00 | 6.00 | 4.00 |
J5 | 59.10 | 40.90 | 100.00 | 30.00 | 7.00 | 5.00 | 5.00 |
Sample | a/Å | b/Å | c/Å | α/° | β/° | γ/° | V/Å3 |
---|---|---|---|---|---|---|---|
J0 | 8.08 | 8.08 | 8.08 | 90.00 | 90.00 | 90.00 | 527.51 |
J1 | 8.15 | 8.15 | 8.15 | 90.00 | 90.00 | 90.00 | 541.34 |
J2 | 8.15 | 8.15 | 8.15 | 90.00 | 90.00 | 90.00 | 541.34 |
J3 | 8.13 | 8.13 | 8.13 | 90.00 | 90.00 | 90.00 | 537.37 |
J4 | 8.12 | 8.12 | 8.12 | 90.00 | 90.00 | 90.00 | 535.39 |
J5 | 8.11 | 8.11 | 8.11 | 90.00 | 90.00 | 90.00 | 533.41 |
Spot | Mg | Al | Si | O | Sm | Ca | Na | Fe | Cu | Total | Phase |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 4.59 | 7.21 | 20.56 | 41.49 | 19.13 | 2.37 | 0.50 | 2.23 | 1.92 | 100 | Magnesium–iron–aluminum spinel; samarium silicate |
2 | 15.78 | 32.15 | 0.22 | 46.45 | 0.00 | 0.00 | 0.00 | 5.40 | 0.00 | 100 | Magnesium–iron–aluminum spinel |
3 | 15.98 | 33.40 | 0.51 | 41.22 | 0.00 | 0.00 | 0.00 | 6.77 | 2.13 | 100 | Magnesium–iron–aluminum spinel |
4 | 15.50 | 31.96 | 0.30 | 46.39 | 0.00 | 0.00 | 0.00 | 5.00 | 0.84 | 100 | Magnesium–iron–aluminum spinel |
5 | 34.56 | 0.47 | 20.85 | 41.88 | 0.00 | 0.00 | 0.00 | 0.95 | 1.29 | 100 | Forsterite |
Spot | Mg | Al | Si | O | Sm | Ca | Fe | Cu | Total | Phase |
---|---|---|---|---|---|---|---|---|---|---|
1 | 15.35 | 30.79 | 0.57 | 44.51 | 0.00 | 0.00 | 7.63 | 1.14 | 100 | Magnesium–iron–aluminum spinel |
2 | 40.57 | 0.90 | 28.19 | 24.53 | 0.00 | 0.29 | 3.39 | 2.15 | 100 | Forsterite |
3 | 16.15 | 33.76 | 0.29 | 40.45 | 0.00 | 0.00 | 8.09 | 0.21 | 100 | Magnesium–iron–aluminum spinel |
4 | 4.67 | 0.63 | 15.57 | 26.81 | 51.67 | 0.66 | 0.00 | 0.00 | 100 | Forsterite; samarium silicate |
5 | 15.44 | 30.61 | 0.38 | 45.75 | 0.00 | 0.00 | 6.82 | 0.19 | 100 | Magnesium–iron–aluminum spinel |
Temperature/°C | Thermal Diffusion Coefficient/mm2·s−1 | Thermal Conductivity/W·(m·K)−1 | Specific Heat Capacity/J·(g·K)−1 | Thermal Storage Density/kJ·kg−1 |
---|---|---|---|---|
25 | 2.39 | 4.06 | 0.55 | 0.00 |
150 | 1.62 | 5.17 | 1.04 | 129.92 |
300 | 1.32 | 4.98 | 1.23 | 337.70 |
450 | 1.14 | 4.71 | 1.34 | 568.79 |
600 | 1.02 | 4.44 | 1.42 | 814.55 |
800 | 0.89 | 4.11 | 1.49 | 1158.53 |
1000 | 0.80 | 3.82 | 1.56 | 1516.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Li, Y.; Cheng, T.; Wu, J.; Shen, Y.; Qiu, S.; Yu, J. Preparation, Microstructure, and Properties of Solar Energy-Absorbing and -Storing Integrated Forsterite-Based Ceramics. Crystals 2025, 15, 427. https://doi.org/10.3390/cryst15050427
Xu X, Li Y, Cheng T, Wu J, Shen Y, Qiu S, Yu J. Preparation, Microstructure, and Properties of Solar Energy-Absorbing and -Storing Integrated Forsterite-Based Ceramics. Crystals. 2025; 15(5):427. https://doi.org/10.3390/cryst15050427
Chicago/Turabian StyleXu, Xiaohong, Yuntian Li, Tiantian Cheng, Jianfeng Wu, Yaqiang Shen, Saixi Qiu, and Jiaqi Yu. 2025. "Preparation, Microstructure, and Properties of Solar Energy-Absorbing and -Storing Integrated Forsterite-Based Ceramics" Crystals 15, no. 5: 427. https://doi.org/10.3390/cryst15050427
APA StyleXu, X., Li, Y., Cheng, T., Wu, J., Shen, Y., Qiu, S., & Yu, J. (2025). Preparation, Microstructure, and Properties of Solar Energy-Absorbing and -Storing Integrated Forsterite-Based Ceramics. Crystals, 15(5), 427. https://doi.org/10.3390/cryst15050427