A Novel Formulation of Fosamprenavir Calcium: Therapeutic Deep Eutectic Solvent with Enhanced Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. THEDES Preparation
2.2. Characterization of Pure FpnCa and Prepared THEDESs
2.3. Determination of Maximum Solubility of FpnCa
2.4. Dissolution Test
2.5. Determination of Permeability and Diffusion Coefficients
3. Results and Discussion
3.1. Characterization and Selection of THEDES
- (a)
- O-H/N-H stretching region (3600–3200 cm−1): a much broader and more intense peak extending over a larger region of FpnCa–LA, which is due to the formation of extensive hydrogen bonding between the components of THEDESs (a complex network of hydrogen bonds between the O-H of LA and the N-H groups of FpnCa).
- (b)
- C=O stretching region (1750–1650 cm−1): FpnCa–LA shows a broadened peak at 1699.06 cm−1, indicating a combined contribution of both compounds and the influence of hydrogen bonding.
- (c)
- C-O stretching region (1300–1000 cm−1): FpnCa–LA shows a broadened and even more complex pattern, reflecting the combined C-O stretches and the formation of new interactions.
- (d)
- Aromatic region (1650–1400 cm−1): FpnCa–LA retains the AR peaks, but they are slightly broadened and altered, indicating interactions with other components.
- (e)
- Fingerprint region (below 1000 cm−1): FpnCa–LA shows a distinctly different pattern, confirming the formation of a new structure with different vibrational modes.
- (a)
- Shifts in the aromatic signals (7.6–6.6 ppm) in the FpnCa–LA (1:6) spectrum indicate changes in the electronic environment of the FpnCa due to the THEDES formation.
- (b)
- The complexity of hydroxyl/carboxylic acid (5.3–5.1 ppm), CH/CH2 (4.5–3.4 ppm) and aliphatic (2.7–0.8 ppm) regions in the DES suggests interactions between the OH and COOH groups of LA and the functional groups of FpnCa, between CH/CH2 groups of LA and FpnCa and between the aliphatic groups of LA and FpnCa, respectively.
- (c)
- The downfield shift of -NH2 proton (from 1.91 ppm (FpnCa) to 2.67 ppm (FpnCa–LA (1:6)) can be attributed to the formation of hydrogen bonds between LA and FpnCa.
3.2. Maximal Solubility
3.3. Drug Release
3.4. Pemeability Studies
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Duarte, A.R.C.; Ferreira, A.S.D.; Barreiros, S.; Cabrita, E.; Reis, R.L.; Paiva, A. A Comparison between Pure Active Pharmaceutical Ingredients and Therapeutic Deep Eutectic Solvents: Solubility and Permeability Studies. Eur. J. Pharm. Biopharm. 2017, 114, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Pedro, S.N.; Freire, C.S.R.; Silvestre, A.J.D.; Freire, M.G. Deep Eutectic Solvents and Pharmaceuticals. Encyclopedia 2021, 1, 942–963. [Google Scholar] [CrossRef]
- Kumari, L.; Choudhari, Y.; Patel, P.; Gupta, G.D.; Singh, D.; Rosenholm, J.M.; Bansal, K.K.; Kurmi, B.D. Advancement in Solubilization Approaches: A Step towards Bioavailability Enhancement of Poorly Soluble Drugs. Life 2023, 13, 1099. [Google Scholar] [CrossRef]
- Bhalani, D.V.; Nutan, B.; Kumar, A.; Singh Chandel, A.K. Bioavailability Enhancement Techniques for Poorly Aqueous Soluble Drugs and Therapeutics. Biomedicines 2022, 10, 2055. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Bedi, N.; Tiwary, A.K. Enhancing Solubility of Poorly Aqueous Soluble Drugs: Critical Appraisal of Techniques. J. Pharm. Investig. 2018, 48, 509–526. [Google Scholar] [CrossRef]
- Nyamba, I.; Sombié, C.B.; Yabré, M.; Zimé-Diawara, H.; Yaméogo, J.; Ouédraogo, S.; Lechanteur, A.; Semdé, R.; Evrard, B. Pharmaceutical Approaches for Enhancing Solubility and Oral Bioavailability of Poorly Soluble Drugs. Eur. J. Pharm. Biopharm. 2024, 204, 114513. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, T.; Sarfraz, R.M.; Ismail, A.; Ali, M.; Khan, A.R. Pharmaceutical Methods for Enhancing the Dissolution of Poorly Water-Soluble Drugs. ASSAY Drug Dev. Technol. 2023, 21, 65–79. [Google Scholar] [CrossRef]
- Pedro, S.N.; Freire, M.G.; Freire, C.S.R.; Silvestre, A.J.D. Deep Eutectic Solvents Comprising Active Pharmaceutical Ingredients in the Development of Drug Delivery Systems. Expert Opin. Drug Deliv. 2019, 16, 497–506. [Google Scholar] [CrossRef]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef]
- Tomé, L.I.N.; Baião, V.; Da Silva, W.; Brett, C.M.A. Deep Eutectic Solvents for the Production and Application of New Materials. Appl. Mater. Today 2018, 10, 30–50. [Google Scholar] [CrossRef]
- Sarraguça, M.C.; Ribeiro, P.R.S.; Nunes, C.; Seabra, C.L. Solids Turn into Liquids—Liquid Eutectic Systems of Pharmaceutics to Improve Drug Solubility. Pharmaceuticals 2022, 15, 279. [Google Scholar] [CrossRef] [PubMed]
- Lomba, L.; Garralaga, M.P.; Werner, Á.; Giner, B.; Baptista, P.M.; Sánchez-Romero, N. Ibuprofen Solubility and Cytotoxic Study of Deep Eutectic Solvents Formed by Xylitol, Choline Chloride and Water. J. Drug Deliv. Sci. Technol. 2023, 82, 104327. [Google Scholar] [CrossRef]
- Pereira, J.; Miguel Castro, M.; Santos, F.; Rita Jesus, A.; Paiva, A.; Oliveira, F.; Duarte, A.R.C. Selective Terpene Based Therapeutic Deep Eutectic Systems against Colorectal Cancer. Eur. J. Pharm. 2022, 175, 13–26. [Google Scholar] [CrossRef]
- Santos, F.; P.S. Leitão, M.I.; C. Duarte, A.R. Properties of Therapeutic Deep Eutectic Solvents of L-Arginine and Ethambutol for Tuberculosis Treatment. Molecules 2018, 24, 55. [Google Scholar] [CrossRef] [PubMed]
- Pedro, S.N.; Gomes, A.T.P.C.; Oskoei, P.; Oliveira, H.; Almeida, A.; Freire, M.G.; Silvestre, A.J.D.; Freire, C.S.R. Boosting Antibiotics Performance by New Formulations with Deep Eutectic Solvents. Int. J. Pharm. 2022, 616, 121566. [Google Scholar] [CrossRef] [PubMed]
- Javed, S.; Mangla, B.; Sultan, M.H.; Almoshari, Y.; Sivadasan, D.; Alqahtani, S.S.; Madkhali, O.A.; Ahsan, W. Pharmaceutical Applications of Therapeutic Deep Eutectic Systems (THEDES) in Maximising Drug Delivery. Heliyon 2024, 10, e29783. [Google Scholar] [CrossRef]
- Bhoge, S.M.; Kshirsagar, P.; Richhariya, S.; Singh, K. Crystalline Form of Fosamprenavir Calcium. US20120208787A1, 16 August 2012. Available online: https://patents.google.com/patent/US20120208787A1/en (accessed on 11 March 2025).
- Bhoge, S.M.; Kshirsagar, P.; Richhariya, S.; Agrawal, A.; Singh, K. Amorphous Fosamprenavir Calcium. US20120135965A1, 31 May 2012. Available online: https://patents.google.com/patent/US20120135965A1/en (accessed on 11 March 2025).
- Cordeiro, C.F.; Bettio, I.; Trevisan, M.G. Studies on the Characterization and Polymorphic Stability of Fosamprenavir. An. Acad. Bras. Ciênc. 2020, 92, e20181021. [Google Scholar] [CrossRef]
- Widjaja, T.; Hendrianie, N.; Nurkhamidah, S.; Altway, A.; Yusuf, B.; F, F.; Rohma, A.A.Z.; Pahlevi, A. Poly Lactic Acid Production Using the Ring Opening Polymerization (ROP) Method Using Lewis Acid Surfactant Combined Iron (Fe) Catalyst (Fe(DS)3). Heliyon 2023, 9, e17985. [Google Scholar] [CrossRef]
- Pires, I.V.; Sakurai, Y.C.N.; Ferreira, N.R.; Moreira, S.G.C.; Da Cruz Rodrigues, A.M.; Da Silva, L.H.M. Elaboration and Characterization of Natural Deep Eutectic Solvents (NADESs): Application in the Extraction of Phenolic Compounds from Pitaya. Molecules 2022, 27, 8310. [Google Scholar] [CrossRef]
- Alotaibi, M.A.; Malik, T.; Naeem, A.; Khan, A.S.; Ud Din, I.; Shaharun, M.S. Exploring the Dynamic World of Ternary Deep Eutectic Solvents: Synthesis, Characterization, and Key Properties Unveiled. Heliyon 2024, 10, e40521. [Google Scholar] [CrossRef]
- Mu, L.; Gao, J.; Zhang, Q.; Kong, F.; Zhang, Y.; Ma, Z.; Sun, C.; Lv, S. Research Progress on Deep Eutectic Solvents and Recent Applications. Processes 2023, 11, 1986. [Google Scholar] [CrossRef]
- Srivastava, N.; Mishra, Y.; Mishra, V. Fosamprenavir calcium loaded dendrimers: Formulation development, evaluation and hemolytic toxicity studies. Int. J. App. Pharm. 2023, 15, 342–352. [Google Scholar] [CrossRef]
- Pretsch, E.; Bühlmann, P.; Badertscher, M. Structure Determination of Organic Compounds: Tables of Spectral Data; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- Hayyan, M.; Abo-Hamad, A.; AlSaadi, M.A.; Hashim, M.A. Functionalization of Graphene Using Deep Eutectic Solvents. Nanoscale Res. Lett. 2015, 10, 324. [Google Scholar] [CrossRef] [PubMed]
- Banjare, M.K.; Behera, K.; Satnami, M.L.; Pandey, S.; Ghosh, K.K. Self-Assembly of a Short-Chain Ionic Liquid within Deep Eutectic Solvents. RSC Adv. 2018, 8, 7969–7979. [Google Scholar] [CrossRef] [PubMed]
- Ravi, T.; Masri, A.N.; Ibrahim, I.M. Choline-Based Deep Eutectic Solvent for Extractive Oxidative Desulfurization of Model Oil. E3S Web Conf. 2024, 488, 03004. [Google Scholar] [CrossRef]
- Ali, M.A.; Kaium, M.A.; Uddin, S.N.; Uddin, M.J.; Olawuyi, O.; Campbell, A.D.; Saint-Louis, C.J.; Halim, M.A. Elucidating the Structure, Dynamics, and Interaction of a Choline Chloride and Citric Acid Based Eutectic System by Spectroscopic and Molecular Modeling Investigations. ACS Omega 2023, 8, 38243–38251. [Google Scholar] [CrossRef]
- Trombino, S.; Siciliano, C.; Procopio, D.; Curcio, F.; Laganà, A.S.; Di Gioia, M.L.; Cassano, R. Deep Eutectic Solvents for Improving the Solubilization and Delivery of Dapsone. Pharmaceutics 2022, 14, 333. [Google Scholar] [CrossRef]
- Bongioanni, A.; Soledad Bueno, M.; Alejandra Mezzano, B.; Raquel Longhi, M.; Garnero, C. Pharmaceutical Crystals: Development, Optimization, Characterization and Biopharmaceutical Aspects. In Crystal Growth and Chirality—Technologies and Applications; Marzouki, R., Akitsu, T., Eds.; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Aroso, I.M.; Silva, J.C.; Mano, F.; Ferreira, A.S.D.; Dionísio, M.; Sá-Nogueira, I.; Barreiros, S.; Reis, R.L.; Paiva, A.; Duarte, A.R.C. Dissolution Enhancement of Active Pharmaceutical Ingredients by Therapeutic Deep Eutectic Systems. Eur. J. Pharm. Biopharm. 2016, 98, 57–66. [Google Scholar] [CrossRef]
- Reddy, D.V.; Rao, A.S. A Review on Oral Extended Release Technology. Res. J. Pharm. Technol. 2015, 8, 1454. [Google Scholar] [CrossRef]
- Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic Modeling on Drug Release from Controlled Drug Delivery Systems. Acta. Pol. Pharm. 2010, 67, 217–223. [Google Scholar]
- Ramteke, K.H.; Dighe, P.A.; Kharat, A.R.; Patil, S.V. Mathematical Models of Drug Dissolution: A Review. Sch. Acad. J. Pharm. 2014, 3, 388–396. [Google Scholar]
- Trucillo, P. Drug Carriers: A Review on the Most Used Mathematical Models for Drug Release. Processes 2022, 10, 1094. [Google Scholar] [CrossRef]
- Martín-Camacho, U.D.J.; Rodríguez-Barajas, N.; Sánchez-Burgos, J.A.; Pérez-Larios, A. Weibull β Value for the Discernment of Drug Release Mechanism of PLGA Particles. Int. J. Pharm. 2023, 640, 123017. [Google Scholar] [CrossRef] [PubMed]
THEDES | Molar Ratio |
---|---|
FpnCa–LA | 1:4 |
FpnCa–LA | 1:6 |
FpnCa–LA | 1:8 |
A, m2 | h, m | V2, m3 |
---|---|---|
4.91 × 10−4 | 4.00 × 10−5 | 6.50 × 10−6 |
Wave Number, cm−1 | Assignment | |
---|---|---|
FpnCa | 3475.75 | O-H (water) or N-H (amino group, amide, carbamate) stretching |
3374.50 | O-H (water) or N-H (amino group, amide, carbamate) stretching | |
2972.79 | C-H stretching (aliphatic chains in tetrahydrofuran ring and alkyl groups) | |
2871.84 | C-H stretching (aliphatic chains in tetrahydrofuran ring and alkyl groups) | |
1665.31 | C=O stretching (amide, carbamate) | |
1619.51 | C=C stretching (AR-ring) or N-H bending (amide) | |
1597.81 | C=C stretching (AR-ring) or N-H bending (amide) | |
1507.17 | C=C stretching (AR-ring) or N-H bending (amide) | |
1423.31 | C-H bending (aliphatic) | |
1392.68 | C-H bending (aliphatic) | |
1366.59 | C-H bending (aliphatic) | |
1343.73 | C-H bending (aliphatic) | |
1323.48 | C-H bending (aliphatic) | |
1272.44 | C-O; S=O (sulfonamide group); P=O (Phosphonate group) Stretching | |
1229.34 | C-O; S=O (sulfonamide group); P=O (Phosphonate group) Stretching | |
1161.48 | C-O; S=O (sulfonamide group) Stretching | |
1096.39 | C-O stretching; P-O stretching | |
1048.19 | C-O stretching; P-O stretching | |
982.12 | P-O stretching | |
904.50 | C-H bending (Ar-ring) | |
827.35 | C-H bending (Ar-ring) | |
759.85 | C-H bending (Ar-ring) | |
705.37 | C-H bending (Ar-ring) | |
LA | 3600–3000 | O-H stretching |
2991.20 | C-H stretching (aliphatic) | |
2945.40 | C-H stretching (aliphatic) | |
1722.21 | C=O stretching (carbonyl groups: carboxylic acid and ester linkage) | |
1454.14 | C-H bending (aliphatic) | |
1376.51 | C-H bending (aliphatic) | |
1197.16 | C-O stretching (ester linkage, carboxylic acid, alcohol group) | |
1119.05 | C-O stretching (ester linkage, carboxylic acid, alcohol group) | |
1039.98 | C-O stretching (ester linkage, carboxylic acid, alcohol group) | |
919.92 | O-H bending (carboxylic acid) | |
865.44 | C-C stretching of the polymer backbone or C-H out of plane bends | |
821.09 | C-C stretching of the polymer backbone or C-H out of plane bends | |
746.35 | ||
FpnCa–LA (1:6) | 3362.93 | O-H (water, LA) or N-H (FpnCa) stretching |
3252.34 | O-H (water, LA) or N-H (FpnCa) stretching | |
2984.45 | C-H stretching (aliphatic from both compounds) | |
2876.45 | C-H stretching (aliphatic from both compounds) | |
1699.06 | C=O stretching (both compounds) | |
1637.23 | C=C stretching (AR-ring) and N-H bending (amide) | |
1596.37 | C=C stretching (AR-ring) and N-H bending (amide) | |
1528.73 | C=C stretching (AR-ring) and N-H bending (amide) | |
1498.01 | C=C stretching (AR-ring) and N-H bending (amide) | |
1454.62 | C-H bending (aliphatic from both compounds) | |
1420.39 | C-H bending (aliphatic from both compounds) | |
1404.09 | C-H bending (aliphatic from both compounds) | |
1372.65 | C-H bending (aliphatic from both compounds) | |
1339.15 | C-H bending (aliphatic from both compounds) | |
1315.76 | C-H bending (aliphatic from both compounds) | |
1290.19–1170.11 | C-O; S=O (sulfonamide group); P=O (Phosphonate group) Stretching | |
1207.28 | C-O stretching; P-O stretching | |
1153.99 | C-O; S=O (sulfonamide group) Stretching | |
1124.83 | C-O stretching; P-O stretching | |
1088.19 | C-O stretching; P-O stretching | |
1038.53 | C-O stretching; P-O stretching | |
1008.87 | C-O stretching; P-O stretching | |
968.59 | Possible O-H bending (carboxyilic acid) and other bending modes | |
950.72 | Possible O-H bending (carboxyilic acid) and other bending modes | |
930.05 | Possible O-H bending (carboxyilic acid) and other bending modes | |
867.41 | C-H bending (Ar-ring) | |
830.25 | C-H bending (Ar-ring) | |
749.73 | C-H bending (Ar-ring) | |
701.51 | C-H bending (Ar-ring) |
Maximum Solubility | In Water, mg/L | In Buffer, mg/L |
---|---|---|
FpnCa | 401 | 2860 |
FpnCa–LA (1:6) | 1490 | 6440 |
First-Order Model | K | R2 |
---|---|---|
FpnCa–LA | 0.170 | 0.982 |
FpnCa–LA (1:6) | 0.063 | 0.991 |
Weilbull Model | α | β | R2 |
---|---|---|---|
FpnCa–LA | 23.053 | 1.715 | 0.994 |
FpnCa–LA (1:6) | 13.258 | 0.967 | 0.994 |
Peppas–Shalin Model | k1 | k2 | m | R2 |
---|---|---|---|---|
FpnCa–LA | 48.081 | −5.418 | 0.337 | 0.928 |
FpnCa–LA (1:6) | 19.362 | −0.860 | 0.505 | 0.971 |
FpnCa–LA (1:6) | FpnCa | |
---|---|---|
P, m/s | 4.23 × 10−7 | 1.51 × 10−7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prlić Kardum, J.; Zokić, I.; Sander, A.; Pelin, P. A Novel Formulation of Fosamprenavir Calcium: Therapeutic Deep Eutectic Solvent with Enhanced Properties. Crystals 2025, 15, 350. https://doi.org/10.3390/cryst15040350
Prlić Kardum J, Zokić I, Sander A, Pelin P. A Novel Formulation of Fosamprenavir Calcium: Therapeutic Deep Eutectic Solvent with Enhanced Properties. Crystals. 2025; 15(4):350. https://doi.org/10.3390/cryst15040350
Chicago/Turabian StylePrlić Kardum, Jasna, Iva Zokić, Aleksandra Sander, and Patricija Pelin. 2025. "A Novel Formulation of Fosamprenavir Calcium: Therapeutic Deep Eutectic Solvent with Enhanced Properties" Crystals 15, no. 4: 350. https://doi.org/10.3390/cryst15040350
APA StylePrlić Kardum, J., Zokić, I., Sander, A., & Pelin, P. (2025). A Novel Formulation of Fosamprenavir Calcium: Therapeutic Deep Eutectic Solvent with Enhanced Properties. Crystals, 15(4), 350. https://doi.org/10.3390/cryst15040350