Universal Expressions for the Polarization and the Depolarization Factor in Homogeneous Dielectric and Magnetic Spheres Subjected to an External Field of Any Form
Abstract
:1. Introduction
2. Background
3. Dielectric Spherical Structure Subjected to an External Electric Scalar Potential/Vector Field of Any Form
4. Magnetic Spherical Structure Subjected to an External Magnetic Scalar Pseudopotential/Vector Field of Any Form
5. Applicability of the Present Results and Perspectives
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
(θ, φ) | ∇ (rl (θ, φ)) |
---|---|
0 | |
Appendix C
Representative Cases of a Homogeneous Dielectric Sphere Subjected to Uext(r)/Eext(r) |
---|
(C.1.1) Source: (a) opposite, large plates of a capacitor, placed at distance R > 2a, with surface density of free charge
External vector field, uniform along the z-axis: . Results Scalar potential at the interior of the dielectric sphere, (Sect. 4.4, page 149 in [65] and §9(c), page 79 in [79]): |
where and |
(C.1.2) Source: point free charge, , located at on the positive z-axis. External scalar potential: else with the general term External vector field: Results Scalar potential at the interior of the dielectric sphere, (Problem 4.9, page 165 in [65], §9(h); page 84 in [79]; and [80,81]): |
where and |
(C.1.3) Source: spherical shell of radius R > a with surface density of free charge External vector field: Results Scalar potential at the interior of the dielectric sphere, (this work, analytical solution with standard methods): |
where and |
Representative Cases of a Homogeneous Magnetic Sphere Subjected to Um,ext(r)/Hext(r) |
---|
(C.2.1) Source: opposite, large poles of a U-shaped, homogeneous permanent magnet of magnetization , placed at distance R > 2a, with surface density of magnetic pseudocharges
External vector field, uniform along the z-axis: (where ). Results Scalar pseudopotential at the interior of the magnetic sphere, (Sect. 5.11, page 197 in [65] and Sect. 13.6, Example 13.2, page 422 in [66]): |
where and |
(C.2.2) Source: spherical shell of radius R > a with surface density of magnetic pseudocharge
External vector field: Results Scalar pseudopotential at the interior of the magnetic sphere, (this work, analytical solution with standard methods): |
where and |
References
- Alù, A.; Engheta, N. Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E 2005, 72, 016623. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.Y.; Zhao, Q.; Ge, M.L. The effect of electrostatic shielding using invisibility cloak. AIP Adv. 2011, 1, 042126. [Google Scholar] [CrossRef]
- Lan, C.; Yang, Y.; Geng, Z.; Li, B.; Zhou, J. Electrostatic Field Invisibility Cloak. Sci. Rep. 2015, 5, 16416. [Google Scholar] [CrossRef] [PubMed]
- Tsakmakidis, K.L.; Reshef, O.; Almpanis, E.; Zouros, G.P.; Mohammadi, E.; Saadat, D.; Sohrabi, F.; Fahimi-Kashani, N.; Etezadi, D.; Boyd, R.W.; et al. Ultrabroadband 3D invisibility with fast-light cloaks. Nat. Commun. 2019, 10, 4859. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, J.; Zhang, J. Equivalence between positive and negative refractive index materials in electrostatic cloaks. Sci. Rep. 2021, 11, 20467. [Google Scholar] [CrossRef] [PubMed]
- Velev, O.D.; Bhatt, K.H. On-chip micromanipulation and assembly of colloidal particles by electric fields. Soft Matter 2006, 2, 738–750. [Google Scholar] [CrossRef] [PubMed]
- Shafiee, H.; Caldwell, J.L.; Sano, M.B.; Davalos, R.V. Contactless dielectrophoresis: A new technique for cell manipulation. Biomed. Microdevices 2009, 11, 997–1006. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Khoshmanesh, K.; Mitchell, A.; Kalantar-zadeh, K. Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems. Anal. Bioanal. Chem. 2010, 396, 401–420. [Google Scholar] [CrossRef] [PubMed]
- Çetin, B.; Li, D. Dielectrophoresis in microfluidics technology. Electrophoresis 2011, 32, 2410–2427. [Google Scholar] [CrossRef] [PubMed]
- Jubery, T.Z.; Srivastava, S.K.; Dutta, P. Dielectrophoretic separation of bioparticlesin microdevices: A review. Electrophoresis 2014, 35, 691–713. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Mateo, R.; García-Sánchez, P.; Calero, V.; Morgan, H.; Ramos, A. Stationary electro-osmotic flow driven by AC fields around charged dielectric spheres. J. Fluid Mech. 2021, 924, R2. [Google Scholar] [CrossRef]
- Mansor, M.A.; Jamrus, M.A.; Lok, C.K.; Ahmad, M.R.; Petrů, M.; Koloor, S.S.R. Microfluidic device for both active and passive cell separation techniques: A review. Sens. Actuators Rep. 2025, 9, 100277. [Google Scholar] [CrossRef]
- Balasubramanian, B.; Kraemer, K.L.; Reding, N.A.; Skomski, R.; Ducharme, S.; Sellmyer, D.J. Synthesis of Monodisperse TiO2−Paraffin Core−Shell Nanoparticles for Improved Dielectric Properties. ACS Nano 2010, 4, 1893–1900. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Li, H.; You, H.; Cao, M.; Cao, R. Encapsulating metal organic framework into hollow mesoporous carbon sphere as efficient oxygen bifunctional electrocatalyst. Natl. Sci. Rev. 2020, 7, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Diguet, G.; Bogner, A.; Chenal, J.-M.; Cavaille, J.-Y. Physical modeling of the electromechanical behavior of polar heterogeneous polymers. J. Appl. Phys. 2012, 112, 114905. [Google Scholar] [CrossRef]
- Akihiko, I.; Toshinobu, S.; Koji, A.; Tetsuya, H. Dielectric Modeling of Biological Cells: Models and Algorithm. Bull. Inst. Chem. Res. Kyoto Univ. 1991, 69, 421–438. [Google Scholar]
- Sukhorukov, V.L.; Meedt, G.; Kürschner, M.; Zimmermann, U. A single-shell model for biological cells extended to account for the dielectric anisotropy of the plasma membrane. J. Electrost. 2001, 50, 191–204. [Google Scholar] [CrossRef]
- Ko, Y.T.C.; Huang, J.P.; Yu, K.W. The dielectric behaviour of single-shell spherical cells with a dielectric anisotropy in the shell. J. Phys. Condens. Matter 2004, 16, 499–509. [Google Scholar] [CrossRef]
- Prodan, E.; Prodan, C.; Miller, J.H., Jr. The Dielectric Response of Spherical Live Cells in Suspension: An Analytic Solution. Biophys. J. 2008, 95, 4174–4182. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, H. A Bio-Physical Analysis of Extracellular Ion Mobility and Electric Field Stress. Open J. Biophys. 2022, 12, 153–163. [Google Scholar] [CrossRef]
- Parandhaman, T.; Pentela, N.; Ramalingam, B.; Samanta, D.; Das, S.K. Metal Nanoparticle Loaded Magnetic-Chitosan Microsphere: Water Dispersible and Easily Separable Hybrid Metal Nano-biomaterial for Catalytic Applications. ACS Sustain. Chem. Eng. 2017, 5, 489–501. [Google Scholar] [CrossRef]
- Jiang, W.; Jia, H.; Fan, X.; Dong, L.; Guo, T.; Zhu, L.; Zhu, W.; Li, H. Ionic liquid immobilized on magnetic mesoporous microspheres with rough surface: Application as recyclable amphiphilic catalysts for oxidative desulfurization. Appl. Surf. Sci. 2019, 484, 1027–1034. [Google Scholar] [CrossRef]
- Chu, Y.; Zhang, X.; Chen, W.; Wu, F.; Wang, P.; Yang, Y.; Tao, S.; Wang, X. Plasma assisted-synthesis of magnetic TiO2/SiO2/Fe3O4-polyacrylic acid microsphere and its application for lead removal from water. Sci. Total Environ. 2019, 681, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Li, C.; Liu, X.; Lu, J.; Cheng, Y.; Xiao, L.-P.; Wang, H. Preparation of magnetic hydrogel microspheres of lignin derivate for application in water. Sci. Total Environ. 2019, 685, 847–855. [Google Scholar] [PubMed]
- Ahmed, M.K.; Mansour, S.F.; Ramadan, R.; Afifi, M.; Mostafa, M.S.; El-dek, S.I.; Uskoković, V. Tuning the composition of new brushite/vivianite mixed systems for superior heavy metal removal efficiency from contaminated waters. J. Water Process. Eng. 2020, 34, 101090. [Google Scholar] [CrossRef]
- Xu, J. Cloaking magnetic field and generating electric field with topological insulator and superconductor bi-layer sphere. AIP Adv. 2017, 7, 125220. [Google Scholar]
- Yanyan, Z.; Jun, S. Cloaking magnetic field and generating electric field with topological insulator and high permeability material. Chin. J. Phys. 2019, 57, 14–20. [Google Scholar]
- Hayati Raad, S.; Atlasbaf, Z.; Rashed-Mohassel, J.; Shahabadi, M. Scattering From Graphene-Based Multilayered Spherical Structures. IEEE Trans. Nanotechnol. 2019, 18, 1129–1136. [Google Scholar] [CrossRef]
- Guo, J.; Yang, W.; Wang, C.; He, J.; Chen, J. Poly(N-isopropylacrylamide)-Coated Luminescent/Magnetic Silica Microspheres: Preparation, Characterization, and Biomedical Applications. Chem. Mater. 2006, 18, 5554–5562. [Google Scholar] [CrossRef]
- Stamopoulos, D.; Gogola, V.; Manios, E.; Gourni, E.; Benaki, D.; Niarchos, D.; Pissas, M. Biocompatibility and Solubility of Fe3O4-BSA Conjugates with Human Blood. Curr. Nanosci. 2009, 5, 177–181. [Google Scholar] [CrossRef]
- Issa, B.; Obaidat, I.M.; Albiss, B.A.; Haik, Y. Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications. Int. J. Mol. Sci. 2013, 14, 21266–21305. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Wang, L.; Zheng, Q.; Cai, C.; Yang, X.; Liao, Z. The Recent Applications of Magnetic Nanopartices in Biomedical Fields. Materials 2024, 17, 2870. [Google Scholar] [CrossRef] [PubMed]
- Molday, R.S.; Mackenzie, D. Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells. J. Immunol. Methods 1982, 52, 353–367. [Google Scholar] [CrossRef] [PubMed]
- Hansel, T.T.; De Vries, I.J.M.; Iff, T.; Rihs, S.; Wandzilak, M.; Betz, S.; Blaser, K.; Walker, C. An improved immunomagnetic procedure for the isolation of highly purified human blood eosinophils. J. Immunol. Methods 1991, 145, 105–110. [Google Scholar] [CrossRef]
- Sieben, S.; Bergemann, C.; Lübbe, A.; Brockmann, B.; Rescheleit, D. Comparison of different particles and methods for magnetic isolation of circulating tumor cells. J. Magn. Magn. Mater. 2001, 225, 175–179. [Google Scholar] [CrossRef]
- Furlani, E.P.; Sahoo, Y. Analytical model for the magnetic field and force in a magnetophoretic microsystem. J. Phys. D Appl. Phys. 2006, 39, 1724–1732. [Google Scholar] [CrossRef]
- Furlani, E.P.; Ng, K.C. Analytical model of magnetic nanoparticle transport and capture in the microvasculature. Phys. Rev. E 2006, 73, 061919. [Google Scholar] [CrossRef] [PubMed]
- Smolkin, M.R.; Smolkin, R.D. Calculation and Analysis of the Magnetic Force Acting on a Particle in the Magnetic Field of Separator. Analysis of the Equations Used in the Magnetic Methods of Separation. IEEE Trans. Magn. 2006, 42, 3682–3693. [Google Scholar] [CrossRef]
- Furlani, E.J.; Furlani, E.P. A model for predicting magnetic targeting of multifunctional particles in the microvasculature. J. Magn. Magn. Mater. 2007, 312, 187–193. [Google Scholar] [CrossRef]
- Chung, T.H.; Chang, J.Y.; Lee, W.C. Application of magnetic poly(styrene–glycidyl methacrylate) microspheres for immunomagnetic separation of bone marrow cells. J. Magn. Magn. Mater. 2009, 321, 1635–1638. [Google Scholar] [CrossRef]
- Furlani, E.P.; Xue, X. Field, force and transport analysis for magnetic particle-based gene delivery. Microfluid. Nanofluidics 2012, 13, 589–602. [Google Scholar] [CrossRef]
- Xue, X.; Furlani, E.P. Template-assisted nano-patterning of magnetic core–shell particles in gradient fields. Phys. Chem. Chem. Phys. 2014, 16, 13306–13317. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Zhi, X.; Chen, D.; Xia, F.; Shen, Y.; Niu, J.; Huang, S.; Song, J.; Miao, J.; Cui, D.; et al. A flyover style microfluidic chip for highly purified magnetic cell separation. Biosens. Bioelectron. 2019, 129, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Pastora, J.; Karampelas, I.H.; Bringas, E.; Furlani, E.P.; Ortiz, I. Numerical Analysis of Bead Magnetophoresis from Flowing Blood in a Continuous-Flow Microchannel: Implications to the Bead-Fluid Interactions. Sci. Rep. 2019, 9, 7265. [Google Scholar] [CrossRef]
- Nasiri, R.; Shamloo, A.; Akbari, J. Design of a Hybrid Inertial and Magnetophoretic Microfluidic Device for CTCs Separation from Blood. Micromachines 2021, 12, 877. [Google Scholar] [CrossRef]
- Bridot, J.-L.; Faure, A.-C.; Laurent, S.; Rivière, C.; Billotey, C.; Hiba, B.; Janier, M.; Josserand, V.; Coll, J.-L.; Elst, L.V.; et al. Hybrid Gadolinium Oxide Nanoparticles: Multimodal Contrast Agents for in Vivo Imaging. J. Am. Chem. Soc. 2007, 129, 5076–5084. [Google Scholar] [CrossRef] [PubMed]
- Martin de Rosales, R.T.; Tavaré, R.; Glaria, A.; Varma, G.; Protti, A.; Blower, P.J. 99mTc-Bisphosphonate-Iron Oxide Nanoparticle Conjugates for Dual-Modality Biomedical Imaging. Bioconjug. Chem. 2011, 22, 455–465. [Google Scholar] [CrossRef]
- Estelrich, J.; Sánchez-Martín, M.J.; Busquets, M.A. Nanoparticles in magnetic resonance imaging: From simple to dual contrast agents. Int. J. Nanomed. 2015, 10, 1727–1741. [Google Scholar]
- Karageorgou, M.A.; Stamopoulos, D. Immunocompatibility of a new dual modality contrast agent based on radiolabeled iron-oxide nanoparticles. Sci. Rep. 2021, 11, 9753. [Google Scholar] [CrossRef]
- Karageorgou, M.-A.; Rapsomanikis, A.-N.; Mirković, M.; Vranješ-Ðurić, S.; Stiliaris, E.; Bouziotis, P.; Stamopoulos, D. 99mTc-Labeled Iron Oxide Nanoparticles as Dual-Modality Contrast Agent: A Preliminary Study from Synthesis to Magnetic Resonance and Gamma-Camera Imaging in Mice Models. Nanomaterials 2022, 12, 2728. [Google Scholar] [CrossRef] [PubMed]
- Karageorgou, M.-A.; Bouziotis, P.; Stiliaris, E.; Stamopoulos, D. Radiolabeled Iron Oxide Nanoparticles as Dual Modality Contrast Agents in SPECT/MRI and PET/MRI. Nanomaterials 2023, 13, 503. [Google Scholar] [CrossRef] [PubMed]
- Stamopoulos, D.; Benaki, D.; Bouziotis, P.; Zirogiannis, P.N. In vitro utilization of ferromagnetic nanoparticles in hemodialysis therapy. Nanotechnology 2007, 18, 495102. [Google Scholar] [PubMed]
- Wan, M.M.; Xu, T.T.; Chi, B.; Wang, M.; Huang, Y.Y.; Wang, Q.; Li, T.; Yan, W.Q.; Chen, H.; Xu, P.; et al. A safe and efficient strategy for the rapid elimination of blood lead in vivo based on a capture-fix-separate mechanism. Angew. Chem. Int. Ed. Engl. 2019, 58, 10582–10586. [Google Scholar] [PubMed]
- Shi, Z.; Jin, L.; He, C.; Li, Y.; Jiang, C.; Wang, H.; Zhang, J.; Wang, J.; Zhao, W.; Zhao, C. Hemocompatible magnetic particles with broad-spectrum bacteria capture capability for blood purification. J. Colloid. Interface Sci. 2020, 576, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, I.K.; Schlegel, A.; Graf, R.; Schumacher, C.M.; Senn, N.; Hasler, M.; Gschwind, S.; Hirt, A.-M.; Günther, D.; Clavien, A.-P.; et al. Nanomagnet-based removal of lead and digoxin from living rats. Nanoscale 2013, 5, 8718–8723. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.J.; Jeong, K.J.; Hashimoto, M.; Kwon, A.H.; Rwei, A.; Shankarappa, S.A.; Tsui, J.H.; Kohane, D.S. Synthetic Ligand-Coated Magnetic Nanoparticles for Microfluidic Bacterial Separation from Blood. Nano Lett. 2014, 14, 1. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, I.K.; Schlegel, A.A.; Graf, R.; Stark, W.J.; Beck-Schimmer, B. Magnetic separation-based blood purification: A promising new approach for the removal of disease-causing compounds? J. Nanobiotechnol. 2015, 13, 49. [Google Scholar] [CrossRef] [PubMed]
- Vasić, K.; Knez, Ž.; Leitgeb, M. Multifunctional Iron Oxide nanoparticles as Promising Magnetic Biomaterials in Drug Delivery: A Review. J. Funct. Biomater. 2024, 15, 227. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Dewilde, A.H.; Chinn, P.; Foreman, A.; Barry, S.; Kanne, D.; Braunhut, S.J. Herceptin-directed nanoparticles activated by an alternating magnetic field selectively kill HER-2 positive human breast cells in vitro via hyperthermia. Int. J. Hyperth. 2011, 27, 682–697. [Google Scholar] [CrossRef]
- Abenojar, E.C.; Wickramasinghe, S.; Bas-Concepcion, J.; Samia, A.C.S. Structural effects on the magnetic hyperthermia properties of iron oxide nanoparticles. Progr. Nat. Sci. Mater. Int. 2016, 26, 440–448. [Google Scholar] [CrossRef]
- Tay, Z.W.; Chandrasekharan, P.; Chiu-Lam, A.; Hensley, D.W.; Dhavalikar, R.; Zhou, X.Y.; Yu, E.Y.; Goodwill, P.W.; Zheng, B.; Rinaldi, C.; et al. Magnetic Particle Imaging-Guided Heating in Vivo Using Gradient Fields for Arbitrary Localization of Magnetic Hyperthermia Therapy. ACS Nano 2018, 12, 3699–3713. [Google Scholar] [CrossRef]
- Eivazzadeh-Keihan, R.; Radinekiyan, F.; Maleki, A.; Bani, M.S.; Hajizadeh, Z.; Asgharnasl, S. A novel biocompatible core-shell magnetic nanocomposite based on cross-linked chitosan hydrogels for in vitro hyperthermia of cancer therapy. Int. J. Biol. Macromol. 2019, 140, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Fatima, H.; Charinpanitkul, T.; Kim, K.-S. Fundamentals to Apply Magnetic Nanoparticles for Hyperthermia Therapy. Nanomaterials 2021, 11, 1203. [Google Scholar] [CrossRef] [PubMed]
- Landau, L.D.; Lifshitz, E.M. Electrodynamics of Continuous Media, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 1984. [Google Scholar]
- Jackson, J.D. Classical Electrodynamics, 3rd ed.; Wiley: Hoboken, NJ, USA, 1998. [Google Scholar]
- Zangwill, A. Modern Electrodynamics, 1st ed.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Gonano, C.A.; Zich, R.E.; Mussetta, M. Definition for Polarization P and Magnetization M Fully Consistent with Maxwell’s Equations. Prog. Electromagnet. Res. B 2015, 64, 83–101. [Google Scholar] [CrossRef]
- Stamopoulos, D. Electrostatics in Materials Revisited: The Case of Free Charges Combined with Linear, Homogeneous, and Isotropic Dielectrics. Materials 2024, 17, 5046. [Google Scholar] [CrossRef] [PubMed]
- Stamopoulos, D. Electromagnetism in linear, homogeneous and isotropic materials: The analogy between electricity and magnetism in the susceptibility and polarization. Sci. Rep. 2025. submitted for publication. [Google Scholar]
- Moraitis, P.; Koutsokeras, L.; Stamopoulos, D. AC Magnetic Susceptibility: Mathematical Modeling and Experimental Realization on Poly-Crystalline and Single-Crystalline High-Tc Superconductors YBa2Cu3O7−δ and Bi2−xPbxSr2Ca2Cu3O10+y. Materials 2024, 17, 1744. [Google Scholar] [CrossRef] [PubMed]
- Moraitis, P.; Stamopoulos, D. Assemblies of Coaxial Pick-Up Coils as Generic Inductive Sensors of Magnetic Flux: Mathematical Modeling of Zero, First and Second Derivative Configurations. Sensors 2024, 24, 3790. [Google Scholar] [CrossRef] [PubMed]
- Myroshnychenko, V.; Rodríguez-Fernández, J.; Pastoriza-Santos, I.; Funston, A.M.; Novo, C.; Mulvaney, P.; Liz-Marzán, L.M.; García de Abajo, F.J. Modelling the optical response of gold nanoparticles. Chem. Soc. Rev. 2008, 37, 1792–1805. [Google Scholar] [CrossRef]
- Januar, M.; Liu, B.; Cheng, J.C.; Hatanaka, K.; Misawa, H.; Hsiao, H.H.; Liu, K.C. Role of depolarization factors in the evolution of a dipolar plasmonic spectral line in the far- and near-field regimes. J. Phys. Chem. C 2020, 124, 3250–3259. [Google Scholar]
- Kittel, C. Introduction to Solid State Physics, 8th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Prozorov, R.; Kogan, V.G. Effective Demagnetizing Factors of Diamagnetic Samples of Various Shapes. Phys. Rev. Appl. 2018, 10, 014030. [Google Scholar] [CrossRef]
- Prozorov, R. Meissner-London Susceptibility of Superconducting Right Circular Cylinders in an Axial Magnetic Field. Phys. Rev. Appl. 2021, 16, 024014. [Google Scholar] [CrossRef]
- Coey, J.M.D. Magnetism and Magnetic Materials, Illustrated ed.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Arfken, G.B.; Weber, H.J.; Harris, F.E. Mathematical Methods for Physicists, 7th ed.; Academic Press: Cambridge, MA, USA, 1985. [Google Scholar]
- Böttcher, C.J.F. Theory of Electric Polarization. Vol. I Dielectrics in Static Fields, 2nd ed.; Elsevier Science Publisher B.V.: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Messina, R. Image charges in spherical geometry: Application to colloidal systems. J. Chem. Phys. 2002, 117, 11062–11074. [Google Scholar] [CrossRef]
- Cai, W.; Deng, S.; Jacobs, D. Extending the fast multipole method to charges inside or outside a dielectric sphere. J. Comput. Phys. 2007, 223, 846–864. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stamopoulos, D. Universal Expressions for the Polarization and the Depolarization Factor in Homogeneous Dielectric and Magnetic Spheres Subjected to an External Field of Any Form. Crystals 2025, 15, 331. https://doi.org/10.3390/cryst15040331
Stamopoulos D. Universal Expressions for the Polarization and the Depolarization Factor in Homogeneous Dielectric and Magnetic Spheres Subjected to an External Field of Any Form. Crystals. 2025; 15(4):331. https://doi.org/10.3390/cryst15040331
Chicago/Turabian StyleStamopoulos, Dimosthenis. 2025. "Universal Expressions for the Polarization and the Depolarization Factor in Homogeneous Dielectric and Magnetic Spheres Subjected to an External Field of Any Form" Crystals 15, no. 4: 331. https://doi.org/10.3390/cryst15040331
APA StyleStamopoulos, D. (2025). Universal Expressions for the Polarization and the Depolarization Factor in Homogeneous Dielectric and Magnetic Spheres Subjected to an External Field of Any Form. Crystals, 15(4), 331. https://doi.org/10.3390/cryst15040331