Sintering of Aluminum Powder at Its 2/3 Tm via Sonication Assisted Mixing and Liquid Metal Sintering Method
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Characterization
3. Results and Discussion
3.1. Wettability
3.2. Phase Composition and Microstructure
3.3. Compressive Strength
3.4. Mechanism of Sintering Process
4. Conclusions
- (1)
- Aluminum powder can be easily sintered at 623 K, two-thirds of the melting point of aluminum, via sonication-assisted mixing and liquid metal sintering strategy.
- (2)
- When the sintering temperature is as low as two-thirds of the melting point of aluminum, the compressive strength of the Al-5Ga alloy increases by 62.5% compared with that of pure aluminum.
- (3)
- Gallium can disrupt the Al2O3 film on the aluminum surface, thereby promoting the mutual diffusion between aluminum and gallium atoms and the formation of the Al (Ga) solid solution, which in turn enables aluminum particles to form good metallurgical bonding.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marczyk, J.; Hebda, M. Effect of the Particle Size Distribution of Irregular Al Powder on Properties of Parts for Electronics Fabricated by Binder Jetting. Electronics 2023, 12, 2733. [Google Scholar] [CrossRef]
- Garbiec, D.; Jurczyk, M.; Levintant-Zayonts, N.; Mościcki, T. Properties of Al–Al2O3 composites synthesized by spark plasma sintering method. Arch. Civ. Mech. Eng. 2015, 15, 933–939. [Google Scholar] [CrossRef]
- Wang, Z.; Prashanth, K.G.; Zhang, W.W.; Scudino, S.; Eckert, J. Removing the oxide layer in a nanostructured aluminum alloy by local shear deformation between nanoscale phases. Powder Technol. 2019, 343, 733–737. [Google Scholar] [CrossRef]
- Rahimiana, M.; Ehsani, N.; Parvinb, N.; Baharvandi, H. The effect of particle size, sintering temperature and sintering time on the properties of Al–Al2O3 composites, made by powder metallurgy. J. Mater. Process. Technol. 2009, 209, 5387–5393. [Google Scholar] [CrossRef]
- Yi, L.; Kunimoto, S.; Ishii, T.; He, L.; Onda, T.; Chen, Z. Improved mechanical properties of mechanically milled Mg2Si particles reinforced aluminum-matrix composites prepared by hot extrusion. Mater. Sci. Eng. A 2023, 871, 144904. [Google Scholar] [CrossRef]
- Maggi, F.; Dossi, S.; Paravan, C.; Deluca, L.T.; Liljedahl, M. Activated aluminum powders for space propulsion. Powder Technol. 2015, 270, 46–52. [Google Scholar] [CrossRef]
- Marczyk, J.; Ostrowska, K.; Hebda, M. Influence of binder jet 3D printing process parameters from irregular feedstock powder on final properties of Al parts. Adv. Powder Technol. 2022, 11, 103768. [Google Scholar] [CrossRef]
- Menapace, C.; Cipolloni, G.; Hebda, M.; Ischia, G. Spark plasma sintering behaviour of copper powders having different particle sizes and oxygen contents. Powder Technol. 2016, 291, 170–177. [Google Scholar] [CrossRef]
- Salehi, M.; Maleksaeedi, S.; Sapari, M.A.B.; Nai, M.L.S.; Meenashisundaram, G.K.; Gupta, M. Additive manufacturing of magnesium–zinc–zirconium (ZK) alloys via capillary-mediated binderless three-dimensional printing. Mater. Des. 2019, 16, 107683. [Google Scholar] [CrossRef]
- Salehi, M.; Maleksaeedi, S.; Nai, M.L.S.; Gupta, M. Towards additive manufacturing of magnesium alloys through integration of binderless 3D printing and rapid microwave sintering. Addit. Manuf. 2019, 29, 100790. [Google Scholar] [CrossRef]
- Mendoza-Duarte, J.M.; Estrada-Guel, I.; Garay-Reyes, C.G.; Perez-Bustamante, R.; Romero-Romero, M.; Carreno-Gallardo, C.; Martínez-Sanchez, R. Influence of process conditions on the mechanical and microstructural features of milled Al sintered with rapid heating. Mater. Today Commun. 2023, 36, 106539. [Google Scholar] [CrossRef]
- Zheng, C.; Deng, Z.; Shou, D.; Gong, X.; Yang, Q.; Li, B.; Yuan, C. Effect of sintering temperature on the microstructure and properties of Al–7.5Cu–1Si alloy. Mater. Res. Express. 2024, 11, 036507. [Google Scholar] [CrossRef]
- Yuan, X.; Qu, X.; Yin, H.; Feng, Z.; Tang, M.; Yan, Z.; Tan, Z. Effects of Sintering Temperature on Densification, Microstructure and Mechanical Properties of Al-Based Alloy by High-Velocity Compaction. Metals 2021, 11, 218. [Google Scholar] [CrossRef]
- Ibrahim, A.; Bishop, D.P.; Kipouros, G.J. Sinterability and characterization of commercial aluminum powder metallurgy alloy Alumix 321. Powder Technol. 2015, 279, 106–112. [Google Scholar] [CrossRef]
- Wu, L.; Yu, Z.; Liu, C.; Ma, Y.; Huang, Y.; Wang, T.; Yang, L.; Yan, H.; Liu, W. Microstructure and tensile properties of aluminum powder metallurgy alloy prepared by a novel low-pressure sintering. J. Mater. Res. Technol. 2021, 14, 1419–1429. [Google Scholar] [CrossRef]
- Shirzadi, A.A.; Saindrenan, G.; Wallach, E.R. Flux-free diffusion brazing of aluminium-based materials using gallium. In Materials Science Forum; Trans Tech Publications Ltd.: Bäch, Switzerland, 2002; Volume 396, pp. 1579–1584. Available online: https://www.scientific.net/MSF.396-402.1579 (accessed on 1 October 2025).
- Ferchaud, E.; Christien, F.; Barnier, V.; Paillard, P. Characterisation of Ga-coated and Ga-brazed aluminium. Mater. Charact. 2012, 67, 17–26. [Google Scholar] [CrossRef]
- Kolman, D.G. A review of recent advances in the understanding of liquid metal embrittlement. Corrosion 2019, 75, 42–57. [Google Scholar] [CrossRef]
- Shen, M.; Li, Y.W.; Hu, C.Z.; Xue, S.K.; Xiang, C.Y.; Luo, J.; Yu, Z.Y. The interfacial structure underpinning the Al-Ga liquid metal embrittlement: Disorder vs. order gradients. Scr. Mater. 2021, 204, 114149. [Google Scholar] [CrossRef]
- Rajagopalan, M.; Bhatia, M.A.; Tschopp, M.A.; Srolovitz, D.J.; Solanki, K.N. Atomic-scale analysis of liquid-gallium embrittlement of aluminum grain boundaries. Acta Mater. 2014, 73, 312–325. [Google Scholar] [CrossRef]
- Birbilis, N.; Zhang, R.; Lim, M.L.C.; Gupta, R.K.; Davies, C.H.J.; Lynch, S.P.; Kelly, R.G.; Scully, J.R. Quantification of sensitization in AA5083-H131 via imaging Ga-embrittled fracture surfaces. Corrosion 2013, 69, 396–402. [Google Scholar] [CrossRef]
- Khanna, V.; Kumar, V.; Bansal, S.A.; Prakash, C.; Ubaidullah, M.; Shaikh, S.F.; Pramanik, A.; Basak, A.; Shankar, S. Fabrication of efficient aluminium/graphene nanosheets (Al-GNP) composite by powder metallurgy for strength applications. J. Mater. Res. Technol. 2023, 22, 3402–3412. [Google Scholar] [CrossRef]
- Senel, M.C.; Gurbuz, M. Investigation on Mechanical Properties and Microstructure of B4C/Graphene Binary Particles Reinforced Aluminum Hybrid Composites. Met. Mater. Int. 2021, 27, 2438–2499. [Google Scholar] [CrossRef]
- Taskin, A.; Senel, M.C. Tribological Properties and Microstructures of Tungsten Carbide and Few-Layer Graphene-Reinforced Aluminum-Based Composites. Trans. Indian Inst. Met. 2024, 77, 445–446. [Google Scholar] [CrossRef]
- Skachkov, V.M.; Pasechnik, L.A.; Bibanaeva, S.A.; Medyankina, I.S.; Sabirzyanov, N.A. Two types of the effect of gallium on aluminums. Russ. Metall. 2023, 2023, 1141–1147. [Google Scholar] [CrossRef]







| Sample | Phase | Space Group | Cell Parameters (Å) | Volume (Å3) | R |
|---|---|---|---|---|---|
| - | Al | Fm-3m | a = 4.0497 b = 4.0497 c = 4.0497 | 66.42 | - |
| Al-5Ga | Al (Ga) solid solution | Fm-3m | a = 4.0553 b = 4.0553 c = 4.0553 | 66.7 | 7.12 |
| Al-10Ga | Al (Ga) solid solution | Fm-3m | a = 4.0591 b = 4.0591 c = 4.0591 | 66.8 | 7.07 |
| Al-15Ga | Al (Ga) solid solution | Fm-3m | a = 4.075 b = 4.075 c = 4.075 | 67.7 | 7.04 |
| Sample | Fabrication Methods | Compressive Strength (MPa) | Reference |
|---|---|---|---|
| Pure Al | Ball milling (4 h) and sintering at 903 K | 113.72 | [22] |
| Al-0.1GNP | 128.5 | ||
| Pure Al | Ball milling (1 h) and sintering at 903 K | 91 | [23] |
| Al-6B4C | 113 | ||
| Pure Al | Ball milling (6 h) and sintering at 903 K | 107 | [24] |
| Al-1WC | 116 | ||
| Pure Al | Sintering at 623 K | 64 | This work |
| Al-5Ga | 104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, J.; Wang, T.; Zhang, S. Sintering of Aluminum Powder at Its 2/3 Tm via Sonication Assisted Mixing and Liquid Metal Sintering Method. Crystals 2025, 15, 1038. https://doi.org/10.3390/cryst15121038
Peng J, Wang T, Zhang S. Sintering of Aluminum Powder at Its 2/3 Tm via Sonication Assisted Mixing and Liquid Metal Sintering Method. Crystals. 2025; 15(12):1038. https://doi.org/10.3390/cryst15121038
Chicago/Turabian StylePeng, Jun, Tao Wang, and Shuai Zhang. 2025. "Sintering of Aluminum Powder at Its 2/3 Tm via Sonication Assisted Mixing and Liquid Metal Sintering Method" Crystals 15, no. 12: 1038. https://doi.org/10.3390/cryst15121038
APA StylePeng, J., Wang, T., & Zhang, S. (2025). Sintering of Aluminum Powder at Its 2/3 Tm via Sonication Assisted Mixing and Liquid Metal Sintering Method. Crystals, 15(12), 1038. https://doi.org/10.3390/cryst15121038
