Crystallization of High Performance Metallic Materials (2nd Edition)
1. Introduction
2. An Overview of Published Articles
3. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Loukadakis, V.; Papaefthymiou, S. Advancements in and Applications of Crystal Plasticity Modelling of Metallic Materials. Crystals 2024, 14, 883. https://doi.org/10.3390/cryst14100883.
- Song, Q.; Yang, L.; Yi, F.; Chen, C.; Guo, J.; Qi, Z.; Song, Y. Antibacterial Pure Magnesium and Magnesium Alloys for Biomedical Materials—A Review. Crystals 2024, 14, 939. https://doi.org/10.3390/cryst14110939.
- Qin, T.; Fan, B.; Yu, J.; Bu, C.; Zhang, J. Effect of Erbium Micro-Additions on Microstructures and Properties of 2024 Aluminum Alloy Prepared by Microwave Sintering. Crystals 2024, 14, 382. https://doi.org/10.3390/cryst14040382.
- Shao, K.; Niu, Y.; Pei, Y.; Qiao, J.; Pan, H.; Wang, H. Effects of Continuous Rolling and Reversible Rolling on 2.4% Si Non-Oriented Silicon Steel. Crystals 2024, 14, 824. https://doi.org/10.3390/cryst14090824.
- Guo, F.; Niu, Y.; Fu, B.; Qiao, J.; Qiu, S. Influence Mechanisms of Cold Rolling Reduction Rate on Microstructure, Texture and Magnetic Properties of Non-Oriented Silicon Steel. Crystals 2024, 14, 853. https://doi.org/10.3390/cryst14100853.
- Ding, Z.; Wang, C.; Wang, X.; Xiao, P.; Zhu, L.; Wang, S. The Influence of Process and Slag Parameters on the Liquid Slag Layer in Continuous Casting Mold for Large Billets. Crystals 2025, 15, 388. https://doi.org/10.3390/cryst15050388.
- Zhao, P.; Tuo, L.; Zhang, H.; Sun, Z.; Ren, S.; Yuan, G.; Zheng, Z. Analysis of Fatigue Performance of Metallic Components with Gradient Microstructures. Crystals 2025, 15, 602. https://doi.org/10.3390/cryst15070602.
- Burja, J.; Lindič, J.; Šetina Batič, B.; Nagode, A. Temperature-Dependent Martensitic Transformation in Cold-Rolled AISI 304 Stainless Steel. Crystals 2025, 15, 652. https://doi.org/10.3390/cryst15070652.
- Xue, L.; Li, X.; Wang, T.; Zhao, Q.; Wang, H.; Wang, J.; Lin, W.; Niu, X.; Mu, W.; Chen, C. Analysis of Inclusions in the Entire Smelting Process of High-Grade Rare Earth Non-Oriented Silicon Steel. Crystals 2025, 15, 779. https://doi.org/10.3390/cryst15090779.
- Anghel, I.-M.; Pascu, A.; Hulka, I.; Woelk, D.H.; Uțu, I.-D.; Mărginean, G. Characterization of Cobalt-Based Composite Multilayer Laser-Cladded Coatings. Crystals 2025, 15, 970. https://doi.org/10.3390/cryst15110970.
References
- Mu, W.; Chen, C. Crystallization of High-Performance Metallic Materials. Crystals 2025, 15, 147. [Google Scholar] [CrossRef]
- Irfan, M. Assessing Consumers’ Behavioral Intention and Willingness to Pay for Electric Vehicles: An Evidence from China. J. Compr. Bus. Adm. Res. 2024, 1, 2–11. [Google Scholar] [CrossRef]
- Kubota, T. Recent Progress on Non-oriented Silicon Steel. Steel Res. Int. 2005, 76, 464–470. [Google Scholar] [CrossRef]
- Oda, Y.; Kohno, M.; Honda, A. Recent development of non-oriented electrical steel sheet for automobile electrical devices. J. Mag. Mag. Mater. 2008, 320, 2430–2435. [Google Scholar] [CrossRef]
- Jiao, H.T.; Xu, Y.B.; Zhao, L.Z.; Misra, R.D.K.; Tang, Y.C.; Liu, D.J.; Hu, Y.; Zhao, M.J.; Shen, M.X. Texture evolution in twin-roll strip cast non-oriented electrical steel with strong Cube and Goss texture. Acta Mater. 2020, 199, 311–325. [Google Scholar] [CrossRef]
- Jiao, H.T.; Xie, X.X.; Hu, Y.; Liu, D.J.; Tang, Y.C.; Zhao, L.Z. Enhanced {100} recrystallization texture in strip-cast nonoriented electrical steel by two-stage annealing. Steel Res. Int. 2023, 94, 2200633. [Google Scholar] [CrossRef]
- Jiao, H.T.; Wu, W.S.; Hou, Z.B.; Xie, X.X.; Tang, Y.C.; Misra, R.D.K.; Liu, D.J.; Hu, Y.; Zhao, L.Z. Ultrastrong {100} texture in twin-roll strip cast non-oriented electrical steel through two-step annealing. Scri. Mater. 2024, 243, 115998. [Google Scholar] [CrossRef]
- Xu, N.; Liang, Y.F.; Zhang, C.Y.; Wang, Z.; Wang, Y.L.; Ye, F.; Lin, J.P. Development of strong Goss texture in ultra-thin high silicon steel with excellent magnetic properties fabricated by two-stage rolling. Int. J. Miner. Metall. Mater. 2025, 32, 1595–1606. [Google Scholar] [CrossRef]
- Shao, K.; Niu, Y.; Pei, Y.; Qiao, J.; Pan, H.; Wang, H. Effects of Continuous Rolling and Reversible Rolling on 2.4% Si Non-Oriented Silicon Steel. Crystals 2024, 14, 824. [Google Scholar] [CrossRef]
- Guo, F.; Niu, Y.; Fu, B.; Qiao, J.; Qiu, S. Influence Mechanisms of Cold Rolling Reduction Rate on Microstructure, Texture and Magnetic Properties of Non-Oriented Silicon Steel. Crystals 2024, 14, 853. [Google Scholar] [CrossRef]
- Xue, L.; Li, X.; Wang, T.; Zhao, Q.; Wang, H.; Wang, J.; Lin, W.; Niu, X.; Mu, W.; Chen, C. Analysis of Inclusions in the Entire Smelting Process of High-Grade Rare Earth Non-Oriented Silicon Steel. Crystals 2025, 15, 779. [Google Scholar] [CrossRef]
- Wang, H.J.; Niu, Y.; Ling, H.T.; Qiao, J.L.; Zhang, Y.L.; Zhong, W.; Qiu, S.T. Effects of rare earth La–Ce alloying treatment on modification of inclusions and magnetic properties of W350 non-oriented silicon steel. Metals 2023, 13, 626. [Google Scholar] [CrossRef]
- Wang, H.J.; Niu, Y.H.; Ling, H.T.; Qiao, J.L.; Zhang, Y.L.; Zhong, W.; Qiu, S.T. Modification of rare earth Ce on inclusions in W350 non-oriented silicon steel. Metals 2023, 13, 453. [Google Scholar] [CrossRef]
- Guo, Z.; Li, X.; Liu, Y.; Zheng, Y.; Zhu, L.; Zhang, Y.; Sun, H.; Feng, J.; Cao, R. Effect of Rare Earth Yttrium on Inclusion Characteristics of Grain-Oriented Silicon Steel. Crystals 2023, 13, 896. [Google Scholar] [CrossRef]
- Wang, T.; Chen, C.; Mu, W.Z.; Xue, L.Q.; Cao, J.Q.; Lin, W.M. Analysis of inclusions in whole smelting process of non-oriented silicon steel 23W1700 by rare earth treatment. Iron Steel 2024, 59, 92–103. [Google Scholar] [CrossRef]
- Liu, X.J.; Yang, J.C.; Ren, H.P.; Jia, X.B.; Zhang, M.Y.; Yang, C.Q. Effect of solute Ce, Mn, and Si on mechanical properties of silicon steel: Insights from DFT calculations. J. Iron Steel Res. Int. 2024, 31, 700–709. [Google Scholar] [CrossRef]
- Ren, Q.; Hu, Z.Y.; Liu, Y.X.; Zhang, W.C.; Gao, Z.Q.; Zhang, L.F. Effect of lanthanum on inclusions in non-oriented electrical steel slabs. J. Iron Steel Res. Int. 2024, 31, 1680–1691. [Google Scholar] [CrossRef]
- Shi, Z.M.; Wang, Q.; Zhao, G.; Zhang, R. Effects of Erbium modification on the microstructure and mechanical properties of A356 aluminum alloys. Mater. Sci. Eng. 2015, A626, 102–107. [Google Scholar] [CrossRef]
- Lei, X.; Zhang, Z.; Dong, H.; Wang, C.; Du, X. Effect of erbium on microstructure and mechanical properties of Al-Si-Mg-Cu alloy. Mater. Und Werkst. 2020, 51, 1389–1397. [Google Scholar] [CrossRef]
- Lo, K.H.; Shek, C.H.; Lai, J.K.L. Recent developments in stainless steels. Mater. Sci. Eng. R Rep. 2009, 65, 39–104. [Google Scholar] [CrossRef]
- Lai, J.K.L.; Lo, K.H.; Shek, C.H. Stainless Steels: An Introduction and Their Recent Developments; Bentham Science Publishers: Sharjah, United Arab Emirates, 2012; p. 4. [Google Scholar] [CrossRef]
- San-Martin, D.; Celada-Casero, C.; Vivas, J.; Capdevila, C. Stainless steels. In High-Performance Ferrous Alloys; Rana, R., Ed.; Springer Nature: Cham, Switzerland, 2021; pp. 459–566. [Google Scholar] [CrossRef]
- Chen, C.; Xue, Z.; Mu, W. Advanced Stainless Steel—From Making, Shaping, Treating to Products. Materials 2025, 18, 4730. [Google Scholar] [CrossRef] [PubMed]
- Li, F.K.; Liu, C.S.; Wang, Y.; Zhang, H.; Li, J.; Lu, Y.Y.; Xiong, L.; Ni, H.W. Effect of inclusion and microstructure transformation on corrosion resistance of 316L stainless steel after isothermal heat treatment. J. Iron Steel Res. Int. 2025, 32, 2133–2151. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Liao, X.; Ren, Z.K.; Wang, Z.H.; Liu, Y.X.; Wang, T.; Huang, Q.X. Effect of two-pass rolling of textured roll and polished roll on surface topography and mechanical properties of 316L stainless steel ultra-thin strip. J. Iron Steel Res. Int. 2025, 32, 186–197. [Google Scholar] [CrossRef]
- Kowalska, J.; Witkowska, M. The Influence of Cold Deformation and Annealing on Texture Changes in Austenitic Stainless Steel. Adv. Sci. Technol. Res. J. 2024, 18, 143–158. [Google Scholar] [CrossRef]
- He, C.; Zhu, X.; Hu, C.; Dong, H.; Wan, X.; Liu, E.; Li, G.; Wu, K. Processing an 18Cr-8Ni Austenitic Stainless Steel Without the Dilemma of the Strength and Ductility Trade-Off. JOM 2024, 76, 829–842. [Google Scholar] [CrossRef]
- Song, Y.; Li, Y.; Lu, J.; Hua, L.; Gu, Y.; Yang, Y. Strengthening and toughening mechanisms of martensite-bainite microstructure in 2 GPa ultra-high strength steel during hot stamping. Sci. China Technol. Sci. 2025, 68, 1520201. [Google Scholar] [CrossRef]
- Li, P.C.; Wang, T.; Zhao, C.C.; Liu, Q.; Huang, Q.X. Effect of ceramic work rolls on surface roughness of rolled SUS304 ultra-thin strips. J. Iron Steel Res. Int. 2024, 31, 1704–1718. [Google Scholar] [CrossRef]
- Zhu, L.; Sun, C.Y.; Wang, B.Y.; Zhou, J. Cross wedge rolling deformation law and bonding mechanism of 304 stainless steel/Q235 carbon steel bimetallic shaft. J. Iron Steel Res. Int. 2024, 31, 2423–2437. [Google Scholar] [CrossRef]
- Guo, X.W.; Ren, Z.K.; Wu, H.; Chai, Z.; Zhang, Q.; Wang, T.; Huang, Q.X. Effect of annealing on microstructure and synergistic deformation of 304/TC4 composite plates with corrugated interface. J. Iron Steel Res. Int. 2025, 32, 2434–2451. [Google Scholar] [CrossRef]
- Anghel, I.-M.; Uțu, I.-D.; Pascu, A.; Hulka, I.; Woelk, D.H.; Mărginean, G. Microstructure and properties of Co-based laser cladded composite coatings. Mater. Test. 2024, 66, 665–674. [Google Scholar] [CrossRef]
- Poloczek, T.; Lont, A.; Górka, J. The structure and properties of laser-cladded Inconel 625/TiC composite coatings. Materials 2023, 16, 1265. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Ding, W.; Wang, X.; Mo, D.; Chen, F. Study on Microstructure and Wear Resistance of Multi-Layer Laser Cladding Fe901 Coating on 65 Mn Steel. Materials 2025, 18, 3505. [Google Scholar] [CrossRef] [PubMed]
- Hammar, O.; Svensson, U. Solidification and Casting of Metals; The Metal Society: London, UK, 1997; p. 401. [Google Scholar]
- Pang, J.C.; Qian, G.Y.; Pang, S.; Ma, W.H.; Cheng, G.G. Design of a submerged entry nozzle for optimizing continuous casting of stainless steel slab. J. Iron Steel Res. Int. 2023, 30, 2229–2241. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, C.; Ren, R.J.; Xue, Z.X.; Wang, H.Z.; Zhang, Y.Z.; Wang, J.X.; Wang, J.; Chen, L.; Mu, W.Z. Ferrite formation and decomposition in 316H austenitic stainless steel electro slag remelting ingot for nuclear power applications. Mater. Charact. 2024, 218, 114581. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, C.; Yang, X.Y.; Zhang, Z.R.; Wang, J.; Li, Z.; Chen, L.; Mu, W.Z. Solidification modes and delta-ferrite of two types 316L stainless steels: A combination of as-cast microstructure and HT-CLSM research. J. Iron Steel Res. Int. 2025, 32, 426–436. [Google Scholar] [CrossRef]
- Xue, Z.; Yang, K.; Li, Y.; Pei, C.; Hou, D.; Zhao, Q.; Wang, Y.; Chen, L.; Chen, C.; Mu, W. The Influence of Heat Treatment Process on the Residual Ferrite in 304L Austenitic Stainless Steel Continuous Casting Slab. Materials 2025, 18, 3724. [Google Scholar] [CrossRef]
- Ding, Z.; Wang, C.; Wang, X.; Xiao, P.; Zhu, L.; Wang, S. The Influence of Process and Slag Parameters on the Liquid Slag Layer in Continuous Casting Mold for Large Billets. Crystals 2025, 15, 388. [Google Scholar] [CrossRef]
- Li, G.; Tu, L.; Wang, Q.; Zhang, X.; He, S. Fluid Flow in Continuous Casting Mold for Ultra-Wide Slab. Materials 2023, 16, 1135. [Google Scholar] [CrossRef]
- Wang, T.J.; Li, K.; Li, S.H.; Wang, L.J.; Yang, J.; Feng, L.H. Asymmetric flow behavior of molten steel in thin slab continuous casting mold. Metall. Mater. Trans. B 2023, 54, 3542–3553. [Google Scholar] [CrossRef]
- Wang, Z.D.; Liu, J.R.; Heng, C.; Sun, H.; Wang, Y.Z. Effect of SEN Asymmetric Clogging on Mold Level Fluctuation and Mold Slag Distribution During Continuous Casting. Metall. Mater. Trans. B 2024, 55, 2932–2947. [Google Scholar] [CrossRef]
- Wang, J.L.; Yang, Y.K.; Zhu, J.Y.; Wang, W.A.; Niu, L.; Li, X.M. Numerical simulation of nozzle structure to improve eccentric mold electromagnetic stirring in a round bloom mold. J. Iron Steel Res. Int. 2024, 31, 2173–2185. [Google Scholar] [CrossRef]
- Van Houtte, P. Crystal Plasticity Based Modelling of Deformation Textures. In Microstructure and Texture in Steels; Springer: London, UK, 2009. [Google Scholar]
- Shiraiwa, T.; Briffod, F.; Enoki, M. Prediction of Fatigue Crack Initiation of 7075 Aluminum Alloy by Crystal Plasticity Simulation. Materials 2023, 16, 1595. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Aty, A.; Ha, S.; Xu, Y.; Hou, Y.; Zhang, S.-H.; Alzahrani, B.; Ali, A.; Ahmed, M.M.Z. Coupling Computational Homogenization with Crystal Plasticity Modelling for Predicting the Warm Deformation Behaviour of AA2060-T8 Al-Li Alloy. Materials 2023, 16, 4069. [Google Scholar] [CrossRef]
- Li, J.; Wu, X.; Jiang, H. Crystal Plasticity Finite Element Simulation of Grain Evolution Behavior in Aluminum Alloy Rolling. Materials 2024, 17, 3749. [Google Scholar] [CrossRef]
- Shveykin, A.; Trusov, P.; Romanov, K. Stability of Crystal Plasticity Constitutive Models: Observations in Numerical Studies and Analytical Justification. Metals 2024, 14, 947. [Google Scholar] [CrossRef]
- Frydrych, K.; Tomczak, M.; Papanikolaou, S. Crystal Plasticity Parameter Optimization in Cyclically Deformed Electrodeposited Copper—A Machine Learning Approach. Materials 2024, 17, 3397. [Google Scholar] [CrossRef]
- Loukadakis, V.; Papaefthymiou, S. Advancements in and Applications of Crystal Plasticity Modelling of Metallic Materials. Crystals 2024, 14, 883. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhao, P.; Zhan, M.; Li, H.; Lei, Y.; Fu, M.W. Understanding of the Fatigue Crack Nucleation in Metallic Sealing Rings by Explicitly Incorporating the Deformation History from Manufacturing to Service. Int. J. Fatigue 2022, 164, 107174. [Google Scholar] [CrossRef]
- Mahmoudi, P.; Akbarpour, M.R.; Lakeh, H.B.; Jing, F.; Hadidi, M.R.; Akhavan, B. Antibacterial Ti-Cu implants: A critical review on mechanisms of action. Mater. Today Bio 2022, 17, 100447. [Google Scholar] [CrossRef]
- Liu, S.; Guo, H.J. A short review of antibacterial Cu-bearing stainless steel: Antibacterial mechanisms, corrosion resistance, and novel preparation techniques. J. Iron Steel Res. Int. 2024, 31, 24–45. [Google Scholar] [CrossRef]
- Song, Q.; Yang, L.; Yi, F.; Chen, C.; Guo, J.; Qi, Z.; Song, Y. Antibacterial Pure Magnesium and Magnesium Alloys for Biomedical Materials—A Review. Crystals 2024, 14, 939. [Google Scholar] [CrossRef]
| No. of Contribution | Research Area | Focus | Type of Research |
|---|---|---|---|
| 1 | Crystal plasticity | Applications and challenges | Review paper |
| 2 | Magnesium alloy | Antibacterial effect and mechanism | Review paper |
| 3 | Erbium added 2024 aluminum alloy | Microstructures and mechanical properties | Experimental study |
| 4 | 2.4% Si non-oriented silicon steel | Effects of annealing temperature on the microstructure, texture, and magnetic properties | Experimental study |
| 5 | 3.0%Si-0.8%Al-0.3%Mn non-oriented silicon steel | Effects of cold rolling reduction rate on microstructure, texture and magnetic properties | Experimental study |
| 6 | SFQ590 steel and continuous casting mold slag | Effects of casting speed, argon injection rate, and mold flux properties on the fluid flow and heat transfer | Computational fluid dynamics study |
| 7 | W-shaped metallic sealing rings by Inconel 718 | Modeling on the sealing performance and fatigue behavior | Numerical model study |
| 8 | Cold-Rolled AISI 304 Stainless Steel | Effect of plastic deformation and temperature on the formation of mechanically induced martensite and hardness | Experimental study |
| 9 | 3.1% Si non-oriented silicon steel with addition of rare earth | the morphology, composition, and size distribution of inclusions throughout the smelting process | Experimental study and thermodynamics calculation |
| 10 | AISI 904L stainless steel and Co-based composite coatings | Laser cladding of the composite coatings | Experimental study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Mu, W. Crystallization of High Performance Metallic Materials (2nd Edition). Crystals 2025, 15, 995. https://doi.org/10.3390/cryst15110995
Chen C, Mu W. Crystallization of High Performance Metallic Materials (2nd Edition). Crystals. 2025; 15(11):995. https://doi.org/10.3390/cryst15110995
Chicago/Turabian StyleChen, Chao, and Wangzhong Mu. 2025. "Crystallization of High Performance Metallic Materials (2nd Edition)" Crystals 15, no. 11: 995. https://doi.org/10.3390/cryst15110995
APA StyleChen, C., & Mu, W. (2025). Crystallization of High Performance Metallic Materials (2nd Edition). Crystals, 15(11), 995. https://doi.org/10.3390/cryst15110995
