The Effects of Network Architecture on the Photomechanical Performance of Azo-Acrylate Liquid Crystal Elastomers
Abstract
:1. Introduction
2. Sample Composition and Structure
2.1. Materials
2.2. Network Synthesis and Sample Production
3. Experimental Results
3.1. Elastic Moduli
3.2. Thermal Stress Measurements
3.3. Transmission Spectra
3.4. Photostress and Thermal Stress Measurements
4. Discussion
5. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Gennes, P.-G. Réflexions sur un type de polymères nématiques. CR Acad. Sci. Ser. B 1975, 281, 101–103. [Google Scholar]
- Finkelmann, H.; Kock, H.-J.; Rehage, G. Investigations on Liquid-Crystalline Polysiloxanes. 3. Liquid-Crystalline Elastomers—A New Type of Liquid-Crystalline Material. Macromol. Rapid Commun. 1981, 2, 317–322. [Google Scholar] [CrossRef]
- Warner, M.; Terentjev, E.M. Nematic Elastomers—A New State of Matter? Prog. Polym. Sci. 1996, 21, 853–891. [Google Scholar] [CrossRef]
- Ahn, C.; Liang, X.; Cai, S. Bioinspired Design of Light-Powered Crawling, Squeezing, and Jumping Untethered Soft Robot. Adv. Mater. Technol. 2019, 4, 1900185. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, Y.; Cai, S.; Yang, J. Three-Dimensional Printing of Liquid Crystal Elastomers and Their Applications. ACS Appl. Polym. Mater. 2022, 4, 3153–3168. [Google Scholar] [CrossRef]
- López-Valdeolivas, M.; Liu, D.; Broer, D.J.; Sánchez-Somolinos, C. 4D Printed Actuators with Soft-Robotic Functions. Macromol. Rapid Commun. 2017, 39, 1700710. [Google Scholar] [CrossRef]
- Sartori, P.; Yadav, R.S.; del Barrio, J.; DeSimone, A.; Sánchez-Somolinos, C. Photochemically Induced Propulsion of a 4D Printed Liquid Crystal Elastomer Biomimetic Swimmer. Adv. Sci. 2024, 11, 2308561. [Google Scholar] [CrossRef]
- Ma, J.; Wang, Y.; Sun, J.; Yang, Z. Liquid Crystal Elastomer Hollow Fibers as Artificial Muscles with Large and Rapid Actuation Enabled by Thermal-Pneumatic Enhanced Effect. Adv. Funct. Mater. 2024, 34, 2402403. [Google Scholar] [CrossRef]
- Li, M.-H.; Keller, P. Artificial Muscles Based on Liquid Crystal Elastomers. Phil. Trans. R. Soc. A 2006, 364, 2763–2777. [Google Scholar] [CrossRef]
- Ma, J.; Yang, Z. Chiral Liquid Crystal Elastomers Advance Light Modulation. Light Sci. Appl. 2024, 13, 205. [Google Scholar] [CrossRef]
- Kim, S.-U.; Lee, Y.-J.; Liu, J.; Kim, D.S.; Wang, H.; Yang, S. Broadband and Pixelated Camouflage in Inflating Chiral Nematic Liquid Crystalline Elastomers. Nat. Mater. 2021, 21, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Roach, D.J.; Yuan, C.; Kuang, X.; Li, V.C.F.; Blake, P.; Romero, M.L.; Hammel, I.; Yu, K.; Qi, H.J. Long liquid crystal elastomer fibers with large reversible actuation strains for smart textiles and artificial muscles. ACS Appl. Mater. Interfaces 2019, 11, 19514–19521. [Google Scholar] [CrossRef] [PubMed]
- Silva, P.E.S.; Lin, X.; Vaara, M.; Mohan, M.; Vapaavuori, J.; Terentjev, E.M. Active Textile Fabrics from Weaving Liquid Crystalline Elastomer Filaments. Adv. Mater. 2023, 31, 2210689. [Google Scholar] [CrossRef] [PubMed]
- Prévôt, M.E.; Ustunel, S.; Hegmann, E. Liquid Crystal Elastomers—A Path to Biocompatible and Biodegradable 3D-LCE Scaffolds for Tissue Regeneration. Materials 2018, 11, 377. [Google Scholar] [CrossRef]
- Wu, J.; Yao, S.; Zhang, H.; Man, W.; Bai, Z.; Zhang, F.; Wang, X.; Fang, D.; Zhang, Y. Liquid Crystal Elastomer Metamaterials with Giant Biaxial Thermal Shrinkage for Enhancing Skin Regeneration. Adv. Mater. 2021, 33, e2106175. [Google Scholar] [CrossRef]
- Hussain, M.; Jull, E.I.; Mandle, R.J.; Raistrick, T.; Hine, P.J.; Gleeson, H.F. Liquid crystal elastomers for biological applications. Nanomaterials 2021, 11, 813. [Google Scholar] [CrossRef]
- Cviklinski, J.; Tajbakhsh, A.R.; Terentjev, E.M. UV Isomerisation in Nematic Elastomers as a Route to Photo-Mechanical Transducer. Eur. Phys. J. E 2002, 9, 427–434. [Google Scholar] [CrossRef]
- Hogan, P.M.; Tajbakhsh, A.R.; Terentjev, E.M. UV Manipulation of Order and Macroscopic Shape in Nematic Elastomers. Phys. Rev. E 2002, 65, 041720. [Google Scholar] [CrossRef]
- Harvey, C.L.M.; Terentjev, E.M. Role of Polarization and Alignment in Photoactuation of Nematic Elastomers. Eur. Phys. J. E 2007, 23, 185–189. [Google Scholar] [CrossRef]
- Sánchez-Ferrer, A.; Merekalov, A.; Finkelmann, H. Opto-Mechanical Effect in Photoactive Nematic Side-Chain Liquid-Crystalline Elastomers. Macromol. Rapid Commun. 2011, 32, 671–678. [Google Scholar] [CrossRef]
- Dawson, N.J.; Kuzyk, M.G.; Neal, J.; Luchette, P.; Palffy-Muhoray, P. Modeling the Mechanisms of the Photomechanical Response of a Nematic Liquid Crystal Elastomer. J. Opt. Soc. Am. 2011, 28, 2134–2141. [Google Scholar] [CrossRef]
- Campos, J.G.; Tobin, C.; Sandlass, S.; Park, M.; Wu, Y.; Gordon, M.; Read, J. Photoactivation of Millimeters Thick Liquid Crystal Elastomers with Broadband Visible Light Using Donor-Acceptor Stenhouse Adducts. Adv. Mater. 2024, 36, 24044932. [Google Scholar] [CrossRef]
- Ware, T.H.; White, T.J. Programmed Liquid Crystal Elastomers with Tunable Actuation Strain. Polym. Chem. 2015, 6, 4835–4844. [Google Scholar] [CrossRef]
- Ware, T.H.; McConney, M.E.; Wie, J.J.; Tondiglia, V.P.; White, T.J. Voxelated Liquid Crystal Elastomers. Science 2015, 347, 982–984. [Google Scholar] [CrossRef]
- Ahn, S.; Ware, T.H.; Lee, K.M.; Tondiglia, V.P.; White, T.J. Photoinduced Topographical Feature Development in Blueprinted Azobenzene-Functionalized Liquid Crystalline Elastomers. Adv. Funct. Mater. 2016, 26, 5819–5826. [Google Scholar] [CrossRef]
- Ambulo, C.P.; Burroughs, J.J.; Boothby, J.M.; Kim, H.; Shankar, M.R.; Ware, T.H. Four-Dimensional Printing of Liquid Crystal Elastomers. ACS Appl. Mater. Interfaces 2017, 9, 37332–37339. [Google Scholar] [CrossRef]
- Kotikian, A.; Truby, R.L.; Boley, J.W.; White, T.J.; Lewis, J.A. 3D Printing of Liquid Crystal Elastomeric Actuators with Spatially Programed Nematic Order. Adv. Mater. 2018, 30, 1706164. [Google Scholar] [CrossRef]
- Ceamanos, L.; Kahveci, Z.; López-Valdeolivas, M.; Liu, D.; Broer, D.J.; Sánchez-Somolinos, C. Four-Dimensional Printed Liquid Crystalline Elastomer Actuators with Fast Photoinduced Mechanical Response toward Light-Driven Robotic Functions. ACS Appl. Mater. Interfaces 2020, 12, 44195–44204. [Google Scholar] [CrossRef]
- Oh, S.-W.; Guo, T.; Kuenstler, A.S.; Hayward, R.; Palffy-Muhoray, P.; Zheng, X. Measuring the Five Elastic Constants of a Nematic Liquid Crystal Elastomer. Liq. Cryst. 2020, 48, 511–520. [Google Scholar] [CrossRef]
- Guo, T.; Svanidze, A.; Zheng, X.; Palffy-Muhoray, P. Regimes in the Response of Photomechanical Materials. Appl. Sci. 2022, 12, 7723. [Google Scholar] [CrossRef]
- White, T. Photomechanical Materials, Composites, and Systems: Wireless Transduction of Light into Work; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017. [Google Scholar]
- Berrow, S.R.; Raistrick, T.; Mandle, R.J.; Gleeson, H.F. Structure–Property Relationships in Auxetic Liquid Crystal Elastomers—The Effect of Spacer Length. Polymers 2024, 16, 1957. [Google Scholar] [CrossRef] [PubMed]
- Yakacki, C.M.; Saed, M.; Nair, D.P.; Gong, T.; Reed, S.M.; Bowman, C.N. Tailorable and Programmable Liquid-Crystalline Elastomers Using a Two-Stage Thiol–Acrylate Reaction. RSC Adv. 2015, 5, 18997–19001. [Google Scholar] [CrossRef]
- Yang, R.; Zhao, Y. Non-Uniform Optical Inscription of Actuation Domains in a Liquid Crystal Polymer of Uniaxial Orientation: An Approach to Complex and Programmable Shape Changes. Angew. Chem. Int. Ed. 2017, 56, 14202–14206. [Google Scholar] [CrossRef] [PubMed]
- Beyer, P.; Braun, L.; Zentel, R. (Photo) Crosslinkable Smectic LC Main-Chain Polymers. Macromol. Chem. Phys. 2007, 208, 2439–2448. [Google Scholar] [CrossRef]
- Lu, H.; Wang, M.; Chen, X.-M.; Lin, B.; Yang, H. Interpenetrating Liquid-Crystal Polyurethane/Polyacrylate Elastomer with Ultrastrong Mechanical Property. J. Am. Chem. Soc. 2019, 141, 14364–14369. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-F.; Luo, X.; Liu, B.-W.; Zhong, H.-Y.; Guo, D.-M.; Yang, R.; Chen, L.; Wang, Y.-Z. Toughening Epoxy Resin Using a Liquid Crystalline Elastomer for Versatile Application. ACS Appl. Polym. Mater. 2019, 1, 2291–2301. [Google Scholar] [CrossRef]
- Warner, M.; Terentjev, E.M. Liquid Crystal Elastomers; International Series of Monographs on Physics 120; Clarendon Press: Oxford, UK, 2007. [Google Scholar]
- Warner, M.; Modes, C.D.; Corbett, D.P. Curvature in Nematic Elastica Responding to Light and Heat. Proc. R. Soc. A Math. 2010, 466, 2975–2989. [Google Scholar] [CrossRef]
- Warner, M.; Terentjev, E. Thermal and Photo-Actuation in Nematic Elastomers. Macromol. Symp. 2003, 200, 81–92. [Google Scholar] [CrossRef]
- Warner, M. Mechanical and Optical Bending of Nematic Elastomer Cantilevers. Phys. Rev. E 2012, 86, 022701. [Google Scholar] [CrossRef]
- Warner, M.; Mahadevan, L. Photoinduced Deformations of Beams, Plates, and Films. Phys. Rev. Lett. 2004, 92, 134302. [Google Scholar] [CrossRef]
- Corbett, D.; Warner, M. Nonlinear Photoresponse of Disordered Elastomers. Phys. Rev. Lett. 2006, 96, 237802. [Google Scholar] [CrossRef] [PubMed]
- Corbett, D.; Warner, M. Changing Liquid Crystal Elastomer Ordering with Light—A Route to Opto-Mechanically Responsive Materials. Liq. Cryst. 2009, 36, 1263–1280. [Google Scholar] [CrossRef]
- Tabrizi, M.; Clement, J.A.; Babaei, M.; Martinez, A.; Gao, J.; Ware, T.H.; Shankar, M.R. Three-Dimensional Blueprinting of Molecular Patterns in Liquid Crystalline Polymers. Soft Matter 2024, 20, 511–522. [Google Scholar] [CrossRef] [PubMed]
- You, Y.; Golestani, Y.M.; Broer, D.J.; Yang, T.; Zhou, G.; Selinger, R.; Yuan, D.; Liu, D. Transforming Patterned Defects into Dynamic Poly-Regional Topographies in Liquid Crystal Oligomers. Mater. Horiz. 2024, 11, 3178–3186. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.-C.; Liu, Q.; Xiao, Y.-Y.; Zhao, Y. Liquid Crystal Elastomers for Actuation: A Perspective on Structure-Property-Function Relation. Prog. Polym. Sci. 2024, 153, 101829. [Google Scholar] [CrossRef]
- Tholen, H.M.; Ambulo, C.P.; Lee, K.M.; Buskohl, P.R.; Harne, R.L. Optomechanical Computing in Liquid Crystal Elastomers. Soft Matter 2023, 19, 6978–6986. [Google Scholar] [CrossRef]
- Van Raak, R.J.H.; Broer, D.J. Biomimetic Liquid Crystal Cilia and Flagella. Polymers 2022, 14, 1384. [Google Scholar] [CrossRef]
- Lyu, P.; Astam, M.O.; Sánchez-Somolinos, C.; Liu, D. Robotic Pick-And-Place Operations in Multifunctional Liquid Crystal Elastomers. Adv. Intell. Syst. 2022, 4, 2200280. [Google Scholar] [CrossRef]
- Fowler, H.E.; Rothemund, P.; Keplinger, C.; White, T.J. Liquid Crystal Elastomers with Enhanced Directional Actuation to Electric Fields. Adv. Mater. 2021, 33, 2103806. [Google Scholar] [CrossRef]
- Urayama, K.; Honda, S.; Takigawa, T. Deformation Coupled to Director Rotation in Swollen Nematic Elastomers under Electric Fields. Macromolecules 2006, 39, 1943–1949. [Google Scholar] [CrossRef]
- Choi, M.-Y.; Kim, K.; Kim, K.; Ahn, S.; Na, J.-H. Rapid and Spatially Programmed Electrostatic Actuation of Anisotropic Polymers. Chem. Eng. J. 2023, 475, 146237. [Google Scholar] [CrossRef]
- Asgari, E.; Robichaud, A.; Cicek, P.-V.; Shih, A. Liquid Crystal Elastomers in Soft Micro Electromechanical Systems: A Review of Recent Developments. J. Mater. Chem. C 2024, 12, 15359–15381. [Google Scholar] [CrossRef]
- Fowler, H.E.; Pearl, H.M.; White, T.J. Enhanced Electromechanical Output in Liquid Crystal Elastomers Prepared by Thiol-ene Photopolymerization. Adv. Mater. Technol. 2024, 9, 2301970. [Google Scholar] [CrossRef]
- Winkler, M.; Kaiser, A.; Krause, S.; Finkelmann, H.; Schmidt, A.M. Liquid Crystal Elastomers with Magnetic Actuation. Macromol. Symp. 2010, 291-292, 186–192. [Google Scholar] [CrossRef]
- Boothby, J.M.; Kim, H.; Ware, T.H. Shape Changes in Chemoresponsive Liquid Crystal Elastomers. Sens. Actuators B Chem. 2017, 240, 511–518. [Google Scholar] [CrossRef]
Sample Type | RM82 | Azo Dye | Acryl./Amine | Irgacure 819 |
---|---|---|---|---|
(Mole Fraction) | (Mole Fraction) | (Mole Ratio) | (wt.%) | |
no azo | 1 | 0 | 1.1:1 | 2.5 |
free-azo 2% | 0.98 | 0.02 | 1.1:1 | 2.5 |
1-azo 2% | 0.98 | 0.02 | 1.1:1 | 2.5 |
2-azo 2% | 0.98 | 0.02 | 1.1:1 | 2.5 |
free-azo 5% | 0.95 | 0.05 | 1.1:1 | 2.5 |
1-azo 5% | 0.95 | 0.05 | 1.1:1 | 2.5 |
2-azo 5% | 0.95 | 0.05 | 1.1:1 | 2.5 |
Sample | Thickness | Max | Number | Decay Length | Absorption | Cis-Lifetime |
---|---|---|---|---|---|---|
(μm) | Absorbance | Density of Dye | (μm) | Cross-Section | (s) | |
(m−3) | (m2) | |||||
free-azo 2% | 27 | 0.43 | 63 | |||
1-azo 2% | 27 | 0.57 | 47 | |||
2-azo 2% | 28 | 0.82 | 34 | |||
free-azo 5% | 31 | 1.36 | 23 | |||
1-azo 5% | 32 | 1.61 | 20 | |||
2-azo 5% | 27 | 1.87 | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Svanidze, A.; Kundu, S.; Iadlovska, O.; Thakur, A.K.; Zheng, X.; Palffy-Muhoray, P. The Effects of Network Architecture on the Photomechanical Performance of Azo-Acrylate Liquid Crystal Elastomers. Crystals 2025, 15, 1. https://doi.org/10.3390/cryst15010001
Svanidze A, Kundu S, Iadlovska O, Thakur AK, Zheng X, Palffy-Muhoray P. The Effects of Network Architecture on the Photomechanical Performance of Azo-Acrylate Liquid Crystal Elastomers. Crystals. 2025; 15(1):1. https://doi.org/10.3390/cryst15010001
Chicago/Turabian StyleSvanidze, Anastasiia, Sudarshan Kundu, Olena Iadlovska, Anil K. Thakur, Xiaoyu Zheng, and Peter Palffy-Muhoray. 2025. "The Effects of Network Architecture on the Photomechanical Performance of Azo-Acrylate Liquid Crystal Elastomers" Crystals 15, no. 1: 1. https://doi.org/10.3390/cryst15010001
APA StyleSvanidze, A., Kundu, S., Iadlovska, O., Thakur, A. K., Zheng, X., & Palffy-Muhoray, P. (2025). The Effects of Network Architecture on the Photomechanical Performance of Azo-Acrylate Liquid Crystal Elastomers. Crystals, 15(1), 1. https://doi.org/10.3390/cryst15010001