Effect of Process Pressure on the Properties of Cu2O Thin Films Deposited by RF Magnetron Sputtering
Abstract
:1. Introduction
2. Materials and Methods
2.1. Deposition of the Cu2O Thin Films
2.2. Analytical and Characterization Methods
3. Results and Discussion
3.1. Structural Analysis of the Cu2O Thin Films
3.2. Morphological Analysis of the Cu2O Thin Films
3.3. Compositional Analysis of the Cu2O Thin Films
3.4. Optical Analysis of the Cu2O Thin Film
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sekkat, A.; Liedke, M.O.; Nguyen, V.H.; Butterling, M.; Baiutti, F.; Sirvent Veru, J.D.; Weber, M.; Rapenne, L.; Bellet, D.; Chichignoud, G.; et al. Chemical deposition of Cu2O films with ultra-low resistivity: Correlation with the defect landscape. Nat. Commun. 2022, 13, 5322. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, J.; Jin, M.; Na, H.-J.; Lee, H.; Im, C.; Kim, Y.S. Cu2O p-type Thin-Film Transistors with Enhanced Switching Characteristics for CMOS Logic Circuit by Controlling Deposition Condition and Annealing in the N2 Atmosphere. ACS Appl. Electron. Mater. 2023, 5, 1123–1130. [Google Scholar] [CrossRef]
- Liu, K.; Duan, Y.-F.; Lv, D.; Wu, H.-B.; Qin, L.-X.; Shi, L.-W.; Tang, G. Pressure-Induced Cubic-to-Hexagonal Phase Transition in Cu2O. Chin. Phys. Lett. 2014, 31, 117701. [Google Scholar] [CrossRef]
- Deuermeier, J.; Gassmann, J.; Brötz, J.; Klein, A. Reactive magnetron sputtering of Cu2O: Dependence on oxygen pressure and interface formation with indium tin oxide. J. Appl. Phys. 2011, 109, 113704. [Google Scholar] [CrossRef]
- Cortona, P.; Mebarki, M. Cu2O behavior under pressure: An ab initio study. J. Phys. Condens. Matter 2011, 23, 045502. [Google Scholar] [CrossRef]
- Sekkat, A.; Nguyen, V.H.; Masse de La Huerta, C.A.; Rapenne, L.; Bellet, D.; Kaminski-Cachopo, A.; Chichignoud, G.; Muñoz-Rojas, D. Open-air printing of Cu2O thin films with high hole mobility for semitransparent solar harvesters. Commun. Mater. 2021, 2, 78. [Google Scholar] [CrossRef]
- Wang, C.; Tissot, H.; Escudero, C.; Pérez-Dieste, V.; Stacchiola, D.; Weissenrieder, J. Redox properties of Cu2O(100) and (111) surfaces. J. Phys. Chem. C 2018, 122, 28684–28691. [Google Scholar] [CrossRef]
- Altindemir, G.; Gumus, C. Cu2O thin films prepared by using four different copper salts at a low temperature: An investigation of their physical properties. Mater. Sci. Semicond. Process 2020, 107, 104805. [Google Scholar] [CrossRef]
- Iivonen, T.; Heikkila, M.J.; Popov, G.; Nieminen, H.E.; Kaipio, M.; Kemell, M.; Mattinen, M.; Meinander, K.; Mizohata, K.; Raisanen, J.; et al. Atomic Layer Deposition of Photoconductive Cu2O Thin Films. ACS Omega 2019, 4, 11205–11214. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.A.; Hussain, S.A.; Nadeem, A.S.; Saleem, M.; Hassnain, A.; Ahmad, R. Role of Oxygen Pressure on the Surface Properties of Polycrystalline Cu2O Films Deposited by Thermal Evaporator. Mater. Phys. Chem. 2019, 1, 14. [Google Scholar] [CrossRef]
- Dey, A.; Chandrabose, G.; Damptey, L.A.O.; Erakulan, E.S.; Thapa, R.; Zhuk, S.; Dalapati, G.K.; Ramakrishna, S.; Braithwaite, N.S.J.; Shirzadi, A.; et al. Cu2O/CuO heterojunction catalysts through atmospheric pressure plasma induced defect passivation. Appl. Surf. Sci. 2021, 541, 148571. [Google Scholar] [CrossRef]
- Umar, M.; Swinkels, M.Y.; De Luca, M.; Fasolato, C.; Moser, L.; Gadea, G.; Marot, L.; Glatzel, T.; Zardo, I. Morphological and stoichiometric optimization of Cu2O thin films by deposition conditions and post-growth annealing. Thin Solid. Film. 2021, 732, 138763. [Google Scholar] [CrossRef]
- Nitta, R.; Taguchi, R.; Kubota, Y.; Kishi, T.; Shishido, A.; Matsushita, N. Novel Bending Sensor Based on a Solution-Processed Cu2O Film with High Resolution Covering a Wide Curvature Range. ACS Omega 2021, 6, 32647–32654. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Yang, M.Y. The effect of negative pressure aging on the aggregation of Cu2O nanoparticles and its application to laser induced copper electrode fabrication. Phys. Chem. Chem. Phys. 2015, 17, 4360–4366. [Google Scholar] [CrossRef] [PubMed]
- Ait Hssi, A.; Atourki, L.; Labchir, N.; Ouafi, M.; Abouabassi, K.; Elfanaoui, A.; Ihlal, A.; Bouabid, K. Optical and dielectric properties of electrochemically deposited p-Cu2O films. Mater. Res. Express 2020, 7, 016424. [Google Scholar] [CrossRef]
- Wei, L.; Leng, C. Sputtering pressure effects on microstructure and grain orientation distribution in FePt thin films. J. Mater. Sci. Mater. Electron. 2017, 28, 5634–5640. [Google Scholar]
- Yue, T.; Lee, H.Y.; Lee, H.; Lee, Y.H. Effect of Sputtering Pressure on the Nanostructure and Residual Stress of Thin-Film YSZ Electrolyte. Sustainability 2022, 14, 9704. [Google Scholar] [CrossRef]
- Bindu, P.; Thomas, S. Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys. 2014, 8, 258–264. [Google Scholar] [CrossRef]
- Swanepoel, R. Determining refractive index and thickness of thin films from wavelength measurements only. J. Opt. Soc. Am. A 1985, 2, 1339–1343. [Google Scholar] [CrossRef]
- Choudhary, S.; Sarma, J.V.; Pande, S.; Ababou-Girard, S.; Turban, P.; Lepine, B.; Gangopadhyay, S. Oxidation mechanism of thin Cu films: A gateway towards the formation of single oxide phase. AIP Adv. 2018, 8, 055114. [Google Scholar] [CrossRef]
- Daniel, A.F.; Alekha, T.; Sugandha, S.; Prerna, S.; Amodini, M.; Somnath, D.; Rajesh, K.; Kamal, K.K. Tunable optical and electrical properties of p-type Cu2O thin films. J. Mater. Sci. Mater. Electron. 2021, 32, 11158–11172. [Google Scholar]
- Goldstein, H.F.; Kim, D.-s.; Yu, P.Y.; Bournet, L.C. Raman study of Cuo single crystals. Phys. Rev. B 1990, 41, 7192–7197. [Google Scholar] [CrossRef]
- Brian, W.K.; David, G.C.; Petrov, I.; Greene, J.E. Effects of high-flux low-energy ion bombardment on the low-temperature growth morphology of TiN(001) epitaxial layers. AIP Adv. 2011, 1, 042117. [Google Scholar]
- Sriram, K.; Yaswanth, S.P.; Peddiraju, V.C.; Rohiteswar, M.; Devapriya, M.S.; Arabinda, H.; Chandrasekhar, M. Deposition pressure-controlled phase tailoring and stability of β-W for spintronic applications. J. Appl. Phys. 2024, 136, 045302. [Google Scholar] [CrossRef]
- Lan, Z.; Yiping, W.; Hua, Z.; Minghao, L.; Randall, L.; Headrick, R.L. Pressure-dependent transition from atoms to nanoparticles in magnetron sputtering: Effect on WSi2 film roughness and stress. Phys. Rev. B 2010, 82, 075408. [Google Scholar]
- Kim, J.-A.; Park, J.-H.; Park, S.-G.; Son, C.-S.; Son, Y.-G.; Hwang, D.-H. Effect of Substrate Temperature on Variations in the Structural and Optical Properties of Cu2O Thin Films Deposited via RF Magnetron Sputtering. Crystals 2023, 13, 643. [Google Scholar] [CrossRef]
- Park, J.; Son, Y.-G.; Son, C.-S.; Hwang, D. Influence of Oxygen Flow Rate on the Phase Structures and Properties for Copper Oxide Thin Films Deposited by RF Magnetron Sputtering. Coatings 2024, 14, 930. [Google Scholar] [CrossRef]
- Marta, M.N.; Alessandro, G.; Antonella, G. CuO/CeO2 Nanocomposites: An XPS Study. Surf. Sci. Spectra 2009, 16, 16–26. [Google Scholar]
- Davide, B.; Alberto, G.; Eugenio, T. CVD Cu2O and CuO Nanosystems Characterized by XPS. Surf. Sci. Spectra 2007, 14, 41–48. [Google Scholar]
- Dupin, J.-C.; Danielle, G.; Philippe, V.; Alain, L. Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys. Chem. Chem. Phys. 2000, 2, 1319–1324. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed.; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Chia, C.-H.; Su, S.-H.; Hu, Y.-M.; Chiou, J.-W.; Yu, C.-C.; Jian, S.-R. Photoluminescence Characteristics of Post-annealed Cu2O Thin Films. J. Electron. Mater. 2024, 53, 7261–7270. [Google Scholar] [CrossRef]
- Swanepoel, R. Determination of the thickness and optical constants of amorphous silicon. J. Phps. E Sci. Instrum. 1983, 16, 1214–1222. [Google Scholar] [CrossRef]
- Hssi, A.A.; Atourki, L.; Labchir, N.; Ouafi, M.; Abouabassi, K.; Elfanaoui, A.; Ihlal, A.; Benmokhtar, S. High-quality Cu2O thin films via electrochemical synthesis under a variable applied potential. J. Mater. Sci. Mater. Electron. 2020, 31, 1234–1245. [Google Scholar]
- Rajesh, D.; Bijaya, B.; Manoj, P.; Sandip, B.; Biplab, B.; Kshama, P.; Santosh, K.T.; Kafle, B.P. Effect of Oxygen Vacancy on the Crystallinity and Optical Band Gap in Tin Oxide Thin Film. Energies 2023, 16, 2653. [Google Scholar] [CrossRef]
- Wang, Y.; Miska, P.; Pilloud, D.; Horwat, D.; Mücklich, F.; Pierson, J.F. Transmittance enhancement and optical band gap widening of Cu2O thin films after air annealing. J. Appl. Phys. 2014, 115, 073505. [Google Scholar] [CrossRef]
- Pagare, P.K.; Torane, A.P. Band gap varied cuprous oxide (Cu2O) thin films as a tool for glucose sensing. Microchim. Acta 2016, 183, 2983–2989. [Google Scholar] [CrossRef]
- Kaur, J.; Khanna, A.; Kumar, R.; Chandra, R. Growth and characterization of Cu2O and CuO thin films. J. Mater. Sci: Mater. Electron. 1922, 33, 16154–16166. [Google Scholar] [CrossRef]
Process Pressure (mTorr) | FWHM (Degree) | Crystallite Size (nm) |
---|---|---|
1 | 0.58 | 15.2 |
5 | 0.24 | 36.4 |
10 | 0.48 | 18.2 |
15 | 0.96 | 9.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Son, C.-S.; Son, Y.-G.; Hwang, D. Effect of Process Pressure on the Properties of Cu2O Thin Films Deposited by RF Magnetron Sputtering. Crystals 2025, 15, 2. https://doi.org/10.3390/cryst15010002
Park J, Son C-S, Son Y-G, Hwang D. Effect of Process Pressure on the Properties of Cu2O Thin Films Deposited by RF Magnetron Sputtering. Crystals. 2025; 15(1):2. https://doi.org/10.3390/cryst15010002
Chicago/Turabian StylePark, Junghwan, Chang-Sik Son, Young-Guk Son, and Donghyun Hwang. 2025. "Effect of Process Pressure on the Properties of Cu2O Thin Films Deposited by RF Magnetron Sputtering" Crystals 15, no. 1: 2. https://doi.org/10.3390/cryst15010002
APA StylePark, J., Son, C.-S., Son, Y.-G., & Hwang, D. (2025). Effect of Process Pressure on the Properties of Cu2O Thin Films Deposited by RF Magnetron Sputtering. Crystals, 15(1), 2. https://doi.org/10.3390/cryst15010002