Effect of Sulphate-Reducing Bacteria Activity on the Performance of Thermally Sprayed Aluminium and Polyurethane Coatings
Abstract
:1. Introduction
2. Material and Methods
2.1. Preparation of Samples
2.2. SRB Culture and Numeration Technique
2.3. Immersion Test Conditions
2.4. Surface Analysis
3. Results and Discussion
3.1. Immersion Test: Visual Inspection
Immersion Test: Surface Analysis and Evaluation
3.2. Bacterial Influence
3.3. Proposed Corrosion Degradation Mechanisms
3.3.1. TSA and TSA + Se Samples
3.3.2. PU Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdolahi, A.; Hamzah, E.; Ibrahim, Z.; Hashim, S. Application of environmentally-friendly coatings toward inhibiting the microbially influenced corrosion (mic) of steel: A review. Polym. Rev. 2014, 54, 702–745. [Google Scholar] [CrossRef]
- Alia, C.; Biezma, M.V.; Pinilla, P.; Arenas, J.M.; Suárez, J.C. Degradation in seawater of structural adhesives for hybrid fibre-metal laminated materials. Adv. Mater. Sci. Eng. 2013, 2013, 869075. [Google Scholar] [CrossRef]
- Korb, L.J.; Olson, D.L. ASM Metals Handbook Volume 13—Corrosion, 4th ed.ASM International: Novelty, Ohio, USA, 1992. [Google Scholar]
- Barron, A.R. The interaction of carboxylic acids with aluminium oxides: Journeying from a basic understanding of alumina nanoparticles to water treatment for industrial and humanitarian applications. Dalton Trans. 2014, 43, 8127–8143. [Google Scholar] [CrossRef]
- Bonner, P.E.; Stanners, J.F. Protection of steel by metal spraying: A review. Br. Corros. J. 1966, 1, 339–343. [Google Scholar] [CrossRef]
- Chaliampalias, D.; Vourlias, G.; Pavlidou, E.; Stergioudis, G.; Skolianos, S.; Chrissafis, K. High temperature oxidation and corrosion in marine environments of thermal spray deposited coatings. Appl. Surf. Sci. 2008, 255, 3104–3111. [Google Scholar] [CrossRef]
- Chavant, P.; Gaillard-Martinie, B.; Talon, R.; Hébraud, M.; Bernardi, T. A new device for rapid evaluation of biofilm formation potential by bacteria. J. Microbiol. Methods 2007, 68, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Cord-Ruwisch, R. Microbially Influenced Corrosion of STEEL. In Environmental Microbe-Metal Interactions; Lovley, D.R., Ed.; ASM Press: Washington DC, USA, 2000; pp. 159–173. [Google Scholar] [CrossRef]
- Dall’Agnol, L.T.; Moura, J.J.G. Sulphate-reducing bacteria (SRB) and biocorrosion. In Understanding Biocorrosion: Fundamentals and Applications; Woodhead Publishing Limited: Sawston, UK, 2014; pp. 77–106. [Google Scholar] [CrossRef]
- Davies, P.; Evrard, G. Accelerated ageing of polyurethanes for marine applications. Polym. Degrad. Stab. 2007, 92, 1455–1464. [Google Scholar] [CrossRef]
- Davis, J.R. (Ed.) Handbook of Thermal Spray Technology, 1st ed.; ASM International: Almere, The Netherlands, 2004. [Google Scholar]
- Edyvean, R.; Maines, A.; Hutchinson, C.; Silk, N.; Evans, L. Interactions between cathodic protection and bacterial settlement on steel in seawater. Int. Biodeterior. Biodegrad. 1992, 29, 251–271. [Google Scholar] [CrossRef]
- Enning, D.; Garrelfs, J. Corrosion of Iron by Sulfate-Reducing Bacteria: New Views of an Old Problem. Appl. Environ. Microbiol. 2014, 80, 1226–1236. [Google Scholar] [CrossRef] [PubMed]
- Fernandez de Romero, M. The mechanism of SRB action in MIC based on sulfide corrosion and iron sulfide corrosion products. In Proceedings of the NACE—International Corrosion Conference Series, Houston, TX, USA, 3–7 April 2005; pp. 1–30. [Google Scholar]
- Foley, R.T.; Nguyen, T.H. The Chemical Nature of Aluminum Corrosion: V. Energy Transfer in Aluminum Dissolution. J. Electrochem. Soc. 1982, 129, 464–467. [Google Scholar] [CrossRef]
- Geesey, G.G.; Mittleman, M.W.; Iwaoka, T.; Griffiths, P.R. Role of bacterial exopolymers in the deterioration of metallic copper surfaces. Mater. Perform. 1986, 25, 37–40. [Google Scholar]
- Gittens, J.E.; Smith, T.J.; Suleiman, R.; Akid, R. Current and emerging environmentally-friendly systems for fouling control in the marine environment. Biotechnol. Adv. 2013, 31, 1738–1753. [Google Scholar] [CrossRef]
- Gougoulidis, G.; Michelis, A. Current and Future Trends in Marine Antifouling Coatings and the Study of Energy Efficiency Benefits for a Naval Fleet. In Environment & Energy in Ships; Environment & Energy in Ships EEinS 2015; ASHRAE: Athens, Greece, 2015. [Google Scholar]
- Gurrappa, I. Cathodic protection of cooling water systems and selection of appropriate materials. J. Am. Acad. Dermatol. 2005, 166, 256–267. [Google Scholar] [CrossRef]
- Hamilton, W.A. Sulphate-reducing bacteria and anaerobic corrosion. Annu. Rev. Microbiol. 1985, 39, 195–217. [Google Scholar] [CrossRef]
- Ikeda, T.; Hirata, M.; Kimura, T. Hydrolysis of Al3+ from constrained molecular dynamics. J. Chem. Phys. 2006, 124, 74503. [Google Scholar] [CrossRef] [PubMed]
- Javaherdashti, R. Microbiologically Influenced Corrosion, 2nd ed.; Springer International Publishing: Perth, Australia, 2017. [Google Scholar]
- Kakooei, S.; Ismail, M.C.; Ariwahjoedi, B. Mechanisms of Microbiologically Influenced Corrosion: A Review. World Appl. Sci. J. 2012, 17, 524–531. [Google Scholar]
- Lee, H.-S.; Park, J.-H.; Singh, J.K.; Ismail, M.A. Protection of reinforced concrete structures of waste water treatment reservoirs with stainless steel coating using arc thermal spraying technique in acidified water. Materials 2016, 9, 753. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-S.; Singh, J.K.; Ismail, M.A. An effective and novel pore sealing agent to enhance the corrosion resistance performance of Al coating in artificial ocean water. Sci. Rep. 2017, 7, 41935. [Google Scholar] [CrossRef] [PubMed]
- Little, B.J.; Lee, J.S. Microbiologically Influenced Corrosion, 1st ed.; Wiley-Interscience: Hoboken, NJ, USA, 2007. [Google Scholar]
- Norsok Standard M-501; Surface Preparation and Protective Coating. Norsk Sokkels Konkuranseposisjon: Lysaker, Norway, 2012.
- Loto, C.A. Microbiological corrosion: Mechanism, control and impact—A review. Int. J. Adv. Manuf. Technol. 2017, 92, 4241–4252. [Google Scholar] [CrossRef]
- Madina, V. Corrosión Bacteriana en Condiciones Representativas de un Almacén Geológico Profundo. Ph.D. Thesis, Universidad del País Vasco, Leioa, Spain, 2014. [Google Scholar]
- Maxwell, S.; Devine, C.; Rooney, F. Monitoring and Control of Bacterial Biofilms in Oilfield Water Handling Systems. Presented at the CORROSION 2004, New Orleans, LA, USA, 28 March–1 April 2004. NACE-04752. [Google Scholar]
- Melchers, R.E.; Moan, T.; Gao, Z. Corrosion of working chains continuously immersed in seawater. J. Mar. Sci. Technol. 2007, 12, 102–110. [Google Scholar] [CrossRef]
- Momber, A.W.; Marquardt, T. Protective coatings for offshore wind energy devices (OWEAs): A review. J. Coatings Technol. Res. 2018, 15, 13–40. [Google Scholar] [CrossRef]
- Pourbaix, M.; Franklin, J.A. Atlas of Electrochemical Equilibria in Aqueous Solutions; Pergamon Press: Oxford, UK, 1974. [Google Scholar]
- Reusch, W. Carboxylic Acids [WWW Document]. Michigan State Univ. 2013. Available online: https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/crbacid1.htm (accessed on 1 February 2024).
- Santegoeds, C.M.; Ferdelman, T.G.; Muyzer, G.; de Beer, D. Structural and Functional Dynamics of Sulfate-Reducing Populations in Bacterial Biofilms. Appl. Environ. Microbiol. 1998, 64, 3731–3739. [Google Scholar] [CrossRef] [PubMed]
- Stanzione, M.; Russo, V.; Oliviero, M.; Verdolotti, L.; Sorrentino, A.; Di Serio, M.; Tesser, R.; Iannace, S.; Lavorgna, M. Characterization of sustainable polyhydroxyls, produced from bio-based feedstock, and polyurethane and copolymer urethane-amide foams. Data Brief 2018, 21, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Tandogan, N.; Abadian, P.N.; Huo, B.; Goluch, E.D. Antimicrobial coatings and modifications on medical devices. In Antimicrobial Coatings and Modifications on Medical Devices; Zhang, Z., Wagner, V.E., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 1–273. [Google Scholar] [CrossRef]
- Trif, L.; Shaban, A.; Telegdi, J. Electrochemical and surface analytical techniques applied to microbiologically influenced corrosion investigation. Corros. Rev. 2018, 36, 349–363. [Google Scholar] [CrossRef]
- Urgun-Demirtas, M.; Singh, D.; Pagilla, K. Laboratory investigation of biodegradability of a polyurethane foam under anaerobic conditions. Polym. Degrad. Stab. 2007, 92, 1599–1610. [Google Scholar] [CrossRef]
- Vester, F.; Ingvorsen, K. Improved MPN method to detect sulfate-reducing bacteria with natural media and a Radiotracer. Appl. Environ. Microbiol. 1998, 64, 1700–1707. [Google Scholar] [CrossRef] [PubMed]
- Videla, H.A.; Herrera, L.K. Microbiologically influenced corrosion: Looking to the future. Int. Microbiol. 2005, 8, 169–180. [Google Scholar]
- Von Wolzogen Kühr, C.A.H.; van der Vlugt, L.S. Graphitization of Cast Iron as an Electro-Biochemical process in anaerobic soils. Water 1934, 18, 147–165. [Google Scholar]
- Wood, R.J.K. Tribo-corrosion of coatings: A review. J. Phys. D Appl. Phys. 2007, 40, 5502–5521. [Google Scholar] [CrossRef]
- Xu, W.; Ma, C.; Ma, J.; Gan, T.; Zhang, G. Marine Biofouling Resistance of Polyurethane with Biodegradation and Hydrolyzation. ACS Appl. Mater. Interfaces 2014, 6, 4017–4024. [Google Scholar] [CrossRef]
- Yebra, D.M.; Kiil, S.; Dam-Johansen, K. Antifouling technology—Past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog. Org. Coatings 2004, 50, 75–104. [Google Scholar] [CrossRef]
System | Reference | Dimensions (mm) | Specimen Quantity |
---|---|---|---|
1 | Bare steel | 100 × 50 | 4 |
2 | Steel + TSA | 100 × 50 | 4 |
3 | Steel + TSA + sealant | 100 × 50 | 6 |
4 | Steel + TSA + sealant and superficial defect | 100 × 50 | 2 |
5 | Steel + polyurethane * | 150 × 75 | 4 |
6 | Steel + polyurethane * and superficial defect | 150 × 75 | 2 |
Beaker | Sample | [SRB] cfu/mL (t = 0 days) | [SRB] cfu/mL (t = 29 days) | Analysis after Immersion |
---|---|---|---|---|
1 | Steel | 1.2 × 105 | 2.90 × 106 | Visual inspection |
PU + Def | Visual inspection + SEM/EDS | |||
2 | PU + Def | 1.2 × 105 | 1.41 × 106 | Visual inspection |
TSA | Visual inspection | |||
TSA + Se + Def | None | |||
3 | Steel | 1.2 × 105 | 3.91 × 106 | Visual inspection + SEM/EDS |
TSA | Visual inspection + SEM/EDS | |||
TSA + Se | Visual inspection + SEM/EDS | |||
Control beaker | No samples | 1.2 × 105 | 1.41 × 106 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos-Pereda, I.; Madina, V.; Rodriguez, E.; Jorcin, J.-B.; Acha, E. Effect of Sulphate-Reducing Bacteria Activity on the Performance of Thermally Sprayed Aluminium and Polyurethane Coatings. Crystals 2024, 14, 260. https://doi.org/10.3390/cryst14030260
Santos-Pereda I, Madina V, Rodriguez E, Jorcin J-B, Acha E. Effect of Sulphate-Reducing Bacteria Activity on the Performance of Thermally Sprayed Aluminium and Polyurethane Coatings. Crystals. 2024; 14(3):260. https://doi.org/10.3390/cryst14030260
Chicago/Turabian StyleSantos-Pereda, Iñigo, Virginia Madina, Elena Rodriguez, Jean-Baptiste Jorcin, and Esther Acha. 2024. "Effect of Sulphate-Reducing Bacteria Activity on the Performance of Thermally Sprayed Aluminium and Polyurethane Coatings" Crystals 14, no. 3: 260. https://doi.org/10.3390/cryst14030260
APA StyleSantos-Pereda, I., Madina, V., Rodriguez, E., Jorcin, J.-B., & Acha, E. (2024). Effect of Sulphate-Reducing Bacteria Activity on the Performance of Thermally Sprayed Aluminium and Polyurethane Coatings. Crystals, 14(3), 260. https://doi.org/10.3390/cryst14030260