Segregation of Phosphorus and Silicon at the Grain Boundary in Bcc Iron via Machine-Learned Force Fields
Abstract
:1. Introduction
2. Materials and Methods
2.1. On-the-Fly Machine Learning Process
2.2. Benchmarking
2.3. Calculations of Segregation Energy
3. Results
3.1. Ground-State Properties
Property | MLFe+P | MLFe+Si | Literature |
---|---|---|---|
a0 (Å) | 2.838 | 2.830 | 2.83 [32], 2.87 [33], 2.85 [34], 2.87 [35] e |
B (GPa) | 158 | 177 | 190 [32], 178 [33], 186 [34], 168 [35] e |
γGB (J·m−2) | 1.56 | 1.57 | 1.53 [36], 1.56 [14], 1.55 [37], 1.57 [38] |
3.2. Supercell Size Effect
3.3. Segregation Energy
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sutton, A.P.; Balluffi, R.W. Interfaces in Crystalline Materials; Clarendon Press: Oxford, UK, 1995; ISBN 978-0-19-851385-8. [Google Scholar]
- Lejček, P. Grain Boundary Segregation in Metals; Hull, R., Jagadish, C., Osgood, R.M., Jr., Parisi, J., Wang, Z., Warlimont, H., Eds.; Springer Series in Materials Science; Springer: Heidelberg, Germany; Dordrecht, The Netherlands; London, UK; New York, NY, USA, 2010; ISBN 978-3-642-12504-1. [Google Scholar]
- McLean, D. Grain Boundaries in Metals; Clarendon Press: Oxford, UK, 1957. [Google Scholar]
- Flewitt, P.E.J.; Wild, R.K. Grain Boundaries, Their Microstructure and Chemistry; John Wiley and Sons, Ltd.: Chichester, UK, 2001. [Google Scholar]
- Lejček, P.; Šob, M.; Paidar, V. Interfacial Segregation and Grain Boundary Embrittlement: An Overview and Critical Assessment of Experimental Data and Calculated Results. Prog. Mater. Sci. 2017, 87, 83–139. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Shiga, M.; Kaburaki, H. Grain Boundary Decohesion by Impurity Segregation in a Nickel-Sulfur System. Science 2005, 307, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Freeman, A.J.; Olson, G.B. Nature of Phosphorus Embrittlement of the Fe Σ3(111) Grain Boundary. Phys. Rev. B 1994, 50, 75. [Google Scholar] [CrossRef] [PubMed]
- Mai, H.L.; Cui, X.-Y.; Scheiber, D.; Romaner, L.; Ringer, S.P. The Segregation of Transition Metals to Iron Grain Boundaries and Their Effects on Cohesion. Acta Mater. 2022, 231, 117902. [Google Scholar] [CrossRef]
- Ko, W.-S.; Jeon, J.B.; Lee, C.-H.; Lee, J.-K.; Lee, B.-J. Intergranular Embrittlement of Iron by Phosphorus Segregation: An Atomistic Simulation. Modell Simul. Mater. Sci. Eng. 2013, 21, 025012. [Google Scholar] [CrossRef]
- Lejček, P.; Hofmann, S.; Všianská, M.; Šob, M. Entropy Matters in Grain Boundary Segregation. Acta Mater. 2021, 206, 116597. [Google Scholar] [CrossRef]
- Schönecker, S.; Li, X.; Johansson, B.; Kwon, S.K.; Vitos, L. Thermal Surface Free Energy and Stress of Iron. Sci. Rep. 2015, 5, 14860. [Google Scholar] [CrossRef]
- Scheiber, D.; Popov, M.N.; Romaner, L. Temperature Dependence of Solute Segregation Energies at W GBs from First Principles. Scr. Mater. 2023, 222, 115059. [Google Scholar] [CrossRef]
- Černý, M.; Šesták, P.; Všianská, M.; Lejček, P. On Agreement of Experimental Data and Calculated Results in Grain Boundary Segregation. Metals 2022, 12, 1389. [Google Scholar] [CrossRef]
- Řehák, P.; Všianská, M.; Černý, M. Role of Vibrational Entropy in Impurity Segregation at Grain Boundaries in Bcc Iron. Comput. Mater. Sci. 2023, 216, 111858. [Google Scholar] [CrossRef]
- Lejček, P.; Šob, M.; Paidar, V.; Vitek, V. Why Calculated Energies of Grain Boundary Segregation Are Unreliable When Segregant Solubility Is Low. Scr. Mater. 2013, 68, 547–550. [Google Scholar] [CrossRef]
- Jinnouchi, R.; Lahnsteiner, J.; Karsai, F.; Kresse, G.; Bokdam, M. Phase Transitions of Hybrid Perovskites Simulated by Machine-Learning Force Fields Trained on the Fly with Bayesian Inference. Phys. Rev. Lett. 2019, 122, 225701. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Samanta, A.; Li, B.; Rudd, R.E.; Frolov, T. Predicting Phase Behavior of Grain Boundaries with Evolutionary Search and Machine Learning. Nat. Commun. 2018, 9, 467. [Google Scholar] [CrossRef] [PubMed]
- Huber, L.; Hadian, R.; Grabowski, B.; Neugebauer, J. A Machine Learning Approach to Model Solute Grain Boundary Segregation. Npj Comput. Mater. 2018, 4, 64. [Google Scholar] [CrossRef]
- Shiihara, Y.; Kanazawa, R.; Matsunaka, D.; Lobzenko, I.; Tsuru, T.; Kohyama, M.; Mori, H. Artificial Neural Network Molecular Mechanics of Iron Grain Boundaries. Scr. Mater. 2022, 207, 114268. [Google Scholar] [CrossRef]
- Randle, V. The Role of the Coincidence Site Lattice in Grain Boundary Engineering; Institute of Materials: Midland, MI, USA, 1996; ISBN 1-86125-006-1. [Google Scholar]
- Kresse, G.; Hafner, J. Ab Initio Molecular Dynamics for Open-Shell Transition Metals. Phys. Rev. B 1993, 48, 13115. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. It VESTA: A Three-Dimensional Visualization System for Electronic and Structural Analysis. J. Appl. Crystallogr. 2008, 41, 653–658. [Google Scholar] [CrossRef]
- Jinnouchi, R.; Karsai, F.; Kresse, G. On-the-Fly Machine Learning Force Field Generation: Application to Melting Points. Phys. Rev. B 2019, 100, 014105. [Google Scholar] [CrossRef]
- Jinnouchi, R.; Karsai, F.; Verdi, C.; Asahi, R.; Kresse, G. Descriptors Representing Two- and Three-Body Atomic Distributions and Their Effects on the Accuracy of Machine-Learned Inter-Atomic Potentials. J. Chem. Phys. 2020, 152, 234102. [Google Scholar] [CrossRef] [PubMed]
- Černý, M.; Šesták, P.; Řehák, P.; Všianská, M.; Šob, M. Atomistic Approaches to Cleavage of Interfaces. Modell Simul. Mater. Sci. Eng. 2019, 27, 035007. [Google Scholar] [CrossRef]
- Tschopp, M.A.; Solanki, K.N.; Gao, F.; Sun, X.; Khaleel, M.A.; Horstemeyer, M.F. Probing Grain Boundary Sink Strength at the Nanoscale: Energetics and Length Scales of Vacancy and Interstitial Absorption by Grain Boundaries in α-Fe. Phys. Rev. B 2012, 85, 064108. [Google Scholar] [CrossRef]
- Rajagopalan, M.; Tschopp, M.A.; Solanki, K.N. Grain Boundary Segregation of Interstitial and Substitutional Impurity Atoms in Alpha-Iron. JOM 2014, 66, 129–138. [Google Scholar] [CrossRef]
- Kapikranian, O.; Zapolsky, H.; Domain, C.; Patte, R.; Pareige, C.; Radiguet, B.; Pareige, P. Atomic Structure of Grain Boundaries in Iron Modeled Using the Atomic Density Function. Phys. Rev. B 2014, 89, 014111. [Google Scholar] [CrossRef]
- Černý, M. Elastic Stability of Magnetic Crystals under Isotropic Compression and Tension. Mater. Sci. Eng. A 2007, 462, 432–435. [Google Scholar] [CrossRef]
- Alnemrat, S.; Hooper, J.P.; Vasiliev, I.; Kiefer, B. The Role of Equilibrium Volume and Magnetism on the Stability of Iron Phases at High Pressures. J. Phys. Condens Matter. 2014, 26, 046001. [Google Scholar] [CrossRef] [PubMed]
- Friák, M.; Šob, M. Ab Initio Study of the Bcc-Hcp Transformation in Iron. Phys. Rev. B 2008, 77, 174117. [Google Scholar] [CrossRef]
- Kittel, C. Introduction to Solid State Physics, 8th ed.; John Wiley & Sons: Hoboken, New Caledonia, 2005. [Google Scholar]
- Du, Y.A.; Ismer, L.; Rogal, J.; Hickel, T.; Neugebauer, J.; Drautz, R. First-Principles Study on the Interaction of H Interstitials with Grain Boundaries in α- and γ-Fe. Phys. Rev. B 2011, 84, 144121. [Google Scholar] [CrossRef]
- Hristova, E.; Janisch, R.; Drautz, R.; Hartmaier, A. Solubility of Carbon in α-Iron under Volumetric Strain and Close to the Σ5(310)[001] Grain Boundary: Comparison of DFT and Empirical Potential Methods. Comput. Mater. Sci. 2011, 50, 1088–1096. [Google Scholar] [CrossRef]
- Wang, J.; Madsen, G.K.H.; Drautz, R. Grain Boundaries in Bcc-Fe: A Density-Functional Theory and Tight-Binding Study. Modell Simul. Mater. Sci. Eng. 2018, 26, 025008. [Google Scholar] [CrossRef]
- Ebihara, K.; Suzudo, T. Molecular Dynamics Study of Phosphorus Migration in Σ3(111) and Σ5(0-13) Grain Boundaries of α-Iron. Metals 2022, 12, 662. [Google Scholar] [CrossRef]
- Jin, H.; Elfimov, I.; Militzer, M. Study of the Interaction of Solutes with Σ5 (013) Tilt Grain Boundaries in Iron Using Density-Functional Theory. J. Appl. Phys. 2014, 115, 093506. [Google Scholar] [CrossRef]
- Bhattacharya, S.K.; Kohyama, M.; Tanaka, S.; Shiihara, Y. Si Segregation at Fe Grain Boundaries Analyzed by Ab Initio Local Energy and Local Stress. J. Phys. Condens Matter. 2014, 26, 355005. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Černý, M.; Šesták, P. Segregation of Phosphorus and Silicon at the Grain Boundary in Bcc Iron via Machine-Learned Force Fields. Crystals 2024, 14, 74. https://doi.org/10.3390/cryst14010074
Černý M, Šesták P. Segregation of Phosphorus and Silicon at the Grain Boundary in Bcc Iron via Machine-Learned Force Fields. Crystals. 2024; 14(1):74. https://doi.org/10.3390/cryst14010074
Chicago/Turabian StyleČerný, Miroslav, and Petr Šesták. 2024. "Segregation of Phosphorus and Silicon at the Grain Boundary in Bcc Iron via Machine-Learned Force Fields" Crystals 14, no. 1: 74. https://doi.org/10.3390/cryst14010074
APA StyleČerný, M., & Šesták, P. (2024). Segregation of Phosphorus and Silicon at the Grain Boundary in Bcc Iron via Machine-Learned Force Fields. Crystals, 14(1), 74. https://doi.org/10.3390/cryst14010074