Study of Multi-Channel Mode-Division Multiplexing Based on a Chalcogenide-Lithium Niobate Platform
Abstract
:1. Introduction
2. Theoretical Models
Multi-Channel Pattern Demultiplexer Design and Optimization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, W.; Ghorbani, H.; Shao, T.; Yao, J. On-Chip 4 × 10 GBaud/s Mode-Division Multiplexed PAM-4 Signal Transmission. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 1–8. [Google Scholar] [CrossRef]
- Wang, J.; Long, Y. On-chip silicon photonic signaling and processing: A review. Sci. Bull. 2018, 63, 1267–1310. [Google Scholar] [CrossRef] [PubMed]
- Paredes, B.; Mohammed, Z.; Villegas, J.; Rasras, M. Dual-band (O & C-bands) two-mode multiplexer on the SOI platform. IEEE Photonics J. 2021, 13, 6600309. [Google Scholar]
- Rumley, S.; Bahadori, M.; Polster, R.; Hammond, S.D.; Calhoun, D.M.; Wen, K.; Rodrigues, A.; Bergman, K. Optical interconnects for extreme scale computing systems. Parallel Comput. 2017, 64, 65–80. [Google Scholar] [CrossRef]
- Dai, D.; Li, C.; Wang, S.; Wu, H.; Shi, Y.; Wu, Z.; Gao, S.; Dai, T.; Yu, H.; Tsang, H.K. 10-Channel Mode (de) multiplexer with dual polarizations. Laser Photonics Rev. 2018, 12, 1700109. [Google Scholar] [CrossRef]
- Han, X.; Jiang, Y.; Frigg, A.; Xiao, H.; Zhang, P.; Nguyen, T.G.; Boes, A.; Yang, J.; Ren, G.; Su, Y. Mode and polarization-division multiplexing based on silicon nitride loaded lithium niobate on insulator platform. Laser Photonics Rev. 2022, 16, 2100529. [Google Scholar] [CrossRef]
- Yang, Z.; Wen, M.; Wan, L.; Feng, T.; Zhou, W.; Liu, D.; Zeng, S.; Yang, S.; Li, Z. Efficient acousto-optic modulation using a microring resonator on a thin-film lithium niobate–chalcogenide hybrid platform. Opt. Lett. 2022, 47, 3808–3811. [Google Scholar] [CrossRef]
- Stabile, R. Towards large-scale fast reprogrammable SOA-based photonic integrated switch circuits. Appl. Sci. 2017, 7, 920. [Google Scholar] [CrossRef]
- Chen, W.; Wang, P.; Yang, T.; Wang, G.; Dai, T.; Zhang, Y.; Zhou, L.; Jiang, X.; Yang, J. Silicon three-mode (de) multiplexer based on cascaded asymmetric Y junctions. Opt. Lett. 2016, 41, 2851–2854. [Google Scholar] [CrossRef]
- Blumenthal, D.J.; Heideman, R.; Geuzebroek, D.; Leinse, A.; Roeloffzen, C. Silicon nitride in silicon photonics. Proc. IEEE 2018, 106, 2209–2231. [Google Scholar] [CrossRef]
- Sun, D.; Zhang, Y.; Wang, D.; Song, W.; Liu, X.; Pang, J.; Geng, D.; Sang, Y.; Liu, H. Microstructure and domain engineering of lithium niobate crystal films for integrated photonic applications. Light Sci. Appl. 2020, 9, 197. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Pfeiffer, M.H.; Volet, N.; Zervas, M.; Peters, J.D.; Manganelli, C.L.; Stanton, E.J.; Li, Y.; Kippenberg, T.J.; Bowers, J.E. Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon. Opt. Lett. 2017, 42, 803–806. [Google Scholar] [CrossRef] [PubMed]
- Boes, A.; Corcoran, B.; Chang, L.; Bowers, J.; Mitchell, A. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photonics Rev. 2018, 12, 1700256. [Google Scholar] [CrossRef]
- Zhu, D.; Shao, L.; Yu, M.; Cheng, R.; Desiatov, B.; Xin, C.; Hu, Y.; Holzgrafe, J.; Ghosh, S.; Shams-Ansari, A. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics 2021, 13, 242–352. [Google Scholar] [CrossRef]
- Xu, M.; He, M.; Zhang, H.; Jian, J.; Pan, Y.; Liu, X.; Chen, L.; Meng, X.; Chen, H.; Li, Z. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat. Commun. 2020, 11, 3911. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.; Patil, A.; Chiles, J.; Malinowski, M.; Novak, S.; Richardson, K.; Rabiei, P.; Fathpour, S. Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon. Opt. Express 2015, 23, 22746–22752. [Google Scholar] [CrossRef]
- Qi, Y.; Li, Y. Integrated lithium niobate photonics. Nanophotonics 2020, 9, 1287–1320. [Google Scholar] [CrossRef]
- Poberaj, G.; Hu, H.; Sohler, W.; Guenter, P. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photonics Rev. 2012, 6, 488–503. [Google Scholar] [CrossRef]
- Lin, J.; Bo, F.; Cheng, Y.; Xu, J. Advances in on-chip photonic devices based on lithium niobate on insulator. Photonics Res. 2020, 8, 1910–1936. [Google Scholar] [CrossRef]
- Kharel, P.; Reimer, C.; Luke, K.; He, L.; Zhang, M. Breaking voltage–bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes. Optica 2021, 8, 357–363. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, K.; Wang, M.; Wu, J.; Chiang, K.S. Electro-optic reconfigurable two-mode (de) multiplexer on thin-film lithium niobate. Opt. Lett. 2021, 46, 1001–1004. [Google Scholar] [CrossRef]
- Li, C.; Liu, D.; Dai, D. Multimode silicon photonics. Nanophotonics 2019, 8, 227–247. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, X.; Li, Z.; Guan, H.; Yu, Z.; Wei, Q.; Fan, Z.; Han, W.; Li, Z. On-chip four-mode (de-) multiplexer on thin film lithium niobate–silicon rich nitride hybrid platform. Opt. Lett. 2021, 46, 3179–3182. [Google Scholar] [CrossRef] [PubMed]
- Rabiei, P.; Ma, J.; Khan, S.; Chiles, J.; Fathpour, S. Heterogeneous lithium niobate photonics on silicon substrates. Opt. Express 2013, 21, 25573–25581. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Jiang, Y.; Frigg, A.; Xiao, H.; Zhang, P.; Boes, A.; Nguyen, T.G.; Yang, J.; Ren, G.; Su, Y.; et al. Single-step etched grating couplers for silicon nitride loaded lithium niobate on insulator platform. APL Photonics 2021, 6, 086108. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Z.; Cai, L.; Jiang, Y.-Q.; Zhu, H.; Hu, H. Amorphous silicon-lithium niobate thin film strip-loaded waveguides. Opt. Mater. Express 2017, 7, 4018–4028. [Google Scholar] [CrossRef]
- Yu, Z.; Tong, Y.; Tsang, H.K.; Sun, X. High-dimensional communication on etchless lithium niobate platform with photonic bound states in the continuum. Nat. Commun. 2020, 11, 2602. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Shen, X.; Sun, J.; Vu, K.; Choi, D.-Y.; Wang, R.; Luther-Davies, B.; Dai, S.; Xu, T.; Nie, Q. Fabrication and characterization of Ge20Sb15Se65 chalcogenide glass rib waveguides for telecommunication wavelengths. Thin Solid Film. 2013, 545, 462–465. [Google Scholar] [CrossRef]
- Kaushalram, A.; Talabattula, S. Zero-birefringence dual mode waveguides and polarization-independent two-mode (de)multiplexer on thin film Lithium niobate. Opt. Commun. 2021, 500, 127334. [Google Scholar] [CrossRef]
- Huang, W.; Luo, Y.; Zhang, W.; Li, C.; Li, L.; Yang, Z.; Xu, P. High-sensitivity refractive index sensor based on Ge–Sb–Se chalcogenide microring resonator. Infrared Phys. Technol. 2021, 116, 103792. [Google Scholar] [CrossRef]
- Ding, Y.; Xu, J.; Da Ros, F.; Huang, B.; Ou, H.; Peucheret, C. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer. Opt. Express 2013, 21, 10376–10382. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; He, Y.; Wang, H.; Wang, Z.; Shen, J.; Zhang, Y.; Su, Y. On-chip mode division (de)multiplexer for multi-band operation. Opt. Express 2022, 30, 22779–22787. [Google Scholar] [CrossRef] [PubMed]
- Nath, J.P.; Dhingra, N.; Saxena, G.J.; Sharma, E.K. Compact Mode Division (de)Multiplexer Based on Collaterally Coupled SOI Waveguides. IEEE Photonics Technol. Lett. 2020, 32, 595–598. [Google Scholar] [CrossRef]
- Huang, X.; Liu, Y.; Li, Z.; Fan, Z.; Han, W. High-performance and compact integrated photonics platform based on silicon rich nitride–lithium niobate on insulator. APL Photonics 2021, 6, 116102. [Google Scholar] [CrossRef]
- Yin, M.; Deng, Q.; Li, Y.; Wang, X.; Li, H. Compact and broadband mode multiplexer and demultiplexer based on asymmetric plasmonic–dielectric coupling. Appl. Opt. 2014, 53, 6175–6180. [Google Scholar] [CrossRef]
- Han, X.; Chen, L.; Jiang, Y.H.; Frigg, A.; Xiao, H.F.; Nguyen, T.G.; Boes, A.; Yang, J.H.; Ren, G.H.; Su, Y.K.; et al. Integrated Subwavelength Gratings on a Lithium Niobate on Insulator Platform for Mode and Polarization Manipulation. Laser Photonics Rev. 2022, 16, 2200130. [Google Scholar] [CrossRef]
- Han, X.; Jiang, Y.H.; Xiao, H.F.; Yuan, M.R.; Nguyen, T.G.; Boes, A.; Ren, G.H.; Zhang, Y.; Hao, Q.F.; Su, Y.K.; et al. Subwavelength Grating-Assisted Contra-Directional Couplers in Lithium Niobate on Insulator. Laser Photonics Rev. 2023, 17, 2300203. [Google Scholar] [CrossRef]
Mode Order | W1 (nm) | W2 (µm) | W3 (µm) | W4 (µm) | L (µm) | G (nm) |
---|---|---|---|---|---|---|
TE0 | 810 | - | - | - | - | - |
TE1 | 810 | 1.64 | 1.72 | 1.80 | 69 | 170 |
TE2 | 810 | 2.52 | 2.60 | 2.68 | 77 | 160 |
TE3 | 810 | 3.43 | 3.52 | 3.61 | 87 | 170 |
Ref. | Etching of LN | BIC | Mode Number | Maximum Insertion Loss (1550 nm) | Maximum Crosstalk (1550 nm) | Fabrication Tolerance |
---|---|---|---|---|---|---|
[21] | Yes | No | 2 | / | / | / |
[23] | No | No | 4 | 0.18 dB | / | / |
[27] | No | Yes | 4 | 0.45 dB | −17.70 dB | / |
[36] | No | No | 2 | / | / | ±10 nm |
[37] | No | No | 3 | 1.80 dB | −24.00 dB | ±20 nm |
[6] | No | No | 4 | 0.62 dB | −13.38 dB | / |
This study | No | No | 4 | 0.68 dB | −21.65 dB | ±20 nm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; Liu, B.; Weng, Y.; Song, B. Study of Multi-Channel Mode-Division Multiplexing Based on a Chalcogenide-Lithium Niobate Platform. Crystals 2024, 14, 73. https://doi.org/10.3390/cryst14010073
Zheng J, Liu B, Weng Y, Song B. Study of Multi-Channel Mode-Division Multiplexing Based on a Chalcogenide-Lithium Niobate Platform. Crystals. 2024; 14(1):73. https://doi.org/10.3390/cryst14010073
Chicago/Turabian StyleZheng, Jiacheng, Bowen Liu, Yuefei Weng, and Baoan Song. 2024. "Study of Multi-Channel Mode-Division Multiplexing Based on a Chalcogenide-Lithium Niobate Platform" Crystals 14, no. 1: 73. https://doi.org/10.3390/cryst14010073
APA StyleZheng, J., Liu, B., Weng, Y., & Song, B. (2024). Study of Multi-Channel Mode-Division Multiplexing Based on a Chalcogenide-Lithium Niobate Platform. Crystals, 14(1), 73. https://doi.org/10.3390/cryst14010073