Facile Synthesis of Ni-Doped ZnO Nanostructures via Laser-Assisted Chemical Bath Synthesis with High and Durable Photocatalytic Activity
Abstract
:1. Introduction
2. Methodology
2.1. Materials
2.2. Preparation of Stock Solutions
2.3. Synthesis of ZnO Nanoparticles
2.4. Synthesis of Ni-Doped ZnO Nanoflakes
2.5. Photocatalytic Degradation Study
2.6. Characterization
3. Results and Discussion
3.1. X-ray Diffraction Studies
3.2. Scanning Electron Microscopy (SEM)
3.3. Energy Dispersive X-ray Spectroscopy (EDX)
3.4. Optical Studies/UV–Vis Absorption
3.5. FTIR Studies
3.6. Photocatalytic Study
3.6.1. Photocatalytic Degradation Studies
3.6.2. Photocatalytic Stability
3.6.3. Photocatalysis Mechanism
3.6.4. Significance of the Findings
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, P.; Nadda, A.K.; Kumar, S. Microbial community profiling in bio-stimulated municipal solid waste for effective removal of organic pollutants containing endocrine disrupting chemicals. Microbiol. Res. 2023, 267, 127273. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Huang, T.; Yang, G.; Lu, C.; Dong, F.; Li, Y.; Guan, W. The precursor-guided hydrothermal synthesis of CuBi2O4/WO3 het-erostructure with enhanced photoactivity under simulated solar light irradiation and mechanism insight. J. Hazard. Mater. 2020, 381, 120956. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Tao, Y.; Meng, Q.; Qu, J.; Ma, S.; Han, S.; Zhang, Y. Microwave-combined advanced oxidation for organic pollutants in the environmental remediation: An overview of influence, mechanism, and prospective. Chem. Eng. J. 2022, 441, 135924. [Google Scholar] [CrossRef]
- Kumar, J.A.; Krithiga, T.; Sathish, S.; Renita, A.A.; Prabu, D.; Lokesh, S.; Geetha, R.; Namasivayam, S.K.R.; Sillanpaa, M. Persistent organic pollutants in water resources: Fate, occurrence, characterization and risk analysis. Sci. Total Environ. 2022, 831, 154808. [Google Scholar] [CrossRef]
- Wang, Q.; Huang, N.; Cai, H.; Chen, X.; Wu, Y. Water strategies and practices for sustainable development in the semiconductor industry. Water Cycle 2023, 4, 12–16. [Google Scholar] [CrossRef]
- Pratap, B.; Kumar, S.; Nand, S.; Azad, I.; Bharagava, R.N.; Ferreira, L.F.R.; Dutta, V. Wastewater generation and treatment by various eco-friendly technologies: Possible health hazards and further reuse for environmental safety. Chemosphere 2023, 313, 137547. [Google Scholar] [CrossRef]
- Dong, Y.; Wu, H.; Yang, F.; Gray, S. Cost and efficiency perspectives of ceramic membranes for water treatment. Water Res. 2022, 220, 118629. [Google Scholar] [CrossRef]
- Al Ja’Farawy, M.S.; Kusumandari; Purwanto, A.; Widiyandari, H. Carbon quantum dots supported zinc oxide (ZnO/CQDs) efficient photocatalyst for organic pollutant degradation—A systematic review. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100681. [Google Scholar] [CrossRef]
- Shi, Y.; Feng, D.; Ahmad, S.; Liu, L.; Tang, J. Recent advances in metal–organic frameworks–derived carbon-based materials in sulfate radical-based advanced oxidation processes for organic pollutant removal. Chem. Eng. J. 2023, 454, 140244. [Google Scholar] [CrossRef]
- Jagadeesh, N.; Sundaram, B. Adsorption of Pollutants from Wastewater by Biochar: A Review. J. Hazard. Mater. Adv. 2023, 9, 100226. [Google Scholar] [CrossRef]
- Lung, C.W.; Zheng, Z.; Lo, I.M. Solar-driven photocatalytic chlorine activation for the simultaneous degradation of pharmaceuticals and personal care products and the inactivation of Escherichia coli in drinking water. Chemosphere 2023, 311, 137019. [Google Scholar] [CrossRef]
- Sathish, S.; Kumar, J.A.; Prabu, D.; Renita, A.A.; Murugesan, K.; Rajasimman, M.; Joo, S.-W.; Vasseghian, Y.; Wang, C. Latest avenues on solar light-driven photocatalytic hydrogen generation using surface modified nanomaterials towards sustainable environment and circular bioeconomy. Fuel 2023, 340, 127398. [Google Scholar] [CrossRef]
- El-Maghrabi, H.H.; Younis, S.A.; Ali, H.R.; Nada, A.A. Solar-driven photocatalytic transformation of toluene to benzoic acid over perovskite-type NiTiO3 decorated with reduced GO and g-C3N4 nanosheets. J. Environ. Chem. Eng. 2023, 11, 109477. [Google Scholar] [CrossRef]
- Lenka, S.; Badamali, S.K. Nanostructured ZnO as an efficient heterogeneous photocatalyst towards degradation of lignin under visible light irradiation. Mol. Catal. 2023, 536, 112918. [Google Scholar] [CrossRef]
- Gao, J.; Shen, J.; Maouche, C.; Ali, R.N.; Yang, J.; Liu, Q. Enhanced antibacterial performance in water over the nanostructured heterojunction photocatalysts: A review. J. Clean. Prod. 2022, 372, 133770. [Google Scholar] [CrossRef]
- Ganesh, V.; Al Abdulaal, T.H.; Al Shadidi, M.; Hussien, M.S.A.; Bouzidi, A.; Algarni, H.; Zahran, H.Y.; Abdel-Wahab, M.S.; Mohammed, M.I.; Yahia, I.S.; et al. Enhancement in the Structural, Electrical, Optical, and Photocatalytic Properties of La2O3-Doped ZnO Nanostructures. Materials 2022, 15, 6866. [Google Scholar] [CrossRef]
- Soylu, S.; Kara, M.; Türkmen, M.; Şahin, B. Synergistic effect of Foeniculum vulgare essential oil on the antibacterial activities of Ag- and Cu-substituted ZnO nanorods (ZnO-NRs) against food, human and plant pathogenic bacterial disease agents. Inorg. Chem. Commun. 2022, 146, 110103. [Google Scholar] [CrossRef]
- Hwang, J.-D.; Lin, M.-C. ZnO hole blocking layer induced highly UV responsive p-NiO/n-ZnO/n-Si heterojunction photodiodes. Sens. Actuators A Phys. 2023, 349, 114087. [Google Scholar] [CrossRef]
- Roy, A.; Benhaliliba, M. Investigation of ZnO/p-Si heterojunction solar cell: Showcasing experimental and simulation study. Optik 2023, 274, 170557. [Google Scholar] [CrossRef]
- Kang, S.B.; Sanger, A.; Jeong, M.H.; Baik, J.M.; Choi, K.J. Heterogeneous stacking of reduced graphene oxide on ZnO nanowires for NO2 gas sensors with dramatically improved response and high sensitivity. Sens. Actuators B Chem. 2023, 379, 133196. [Google Scholar] [CrossRef]
- Rajan, A.; Gupta, V.; Arora, K. Thickness dependent ultraviolet photoconductivity studies on sol-gel derived zinc oxide (ZnO) films. Mater. Today Commun. 2023, 35, 105507. [Google Scholar] [CrossRef]
- Kadinskaya, S.A.; Kondratev, V.M.; Kindyushov, I.K.; Koval, O.Y.; Yakubovsky, D.I.; Kusnetsov, A.; Lihachev, A.I.; Nashchekin, A.V.; Akopyan, I.K.; Serov, A.Y.; et al. Deep-Level Emission Tailoring in ZnO Nanostructures Grown via Hydrothermal Synthesis. Nanomaterials 2022, 13, 58. [Google Scholar] [CrossRef]
- Rai, R.S.; Girish, J.P.; Bajpai, V.; Khan, M.I.; Elboughdiri, N.; Shanableh, A.; Luque, R. An eco-friendly approach on green synthesis, bio-engineering applications, and future outlook of ZnO nanomaterial: A critical review. Environ. Res. 2023, 221, 114807. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L. Nanostructures of zinc oxide. Mater. Today 2004, 7, 26–33. [Google Scholar] [CrossRef]
- Ganesh, V.; Hussien, M.S.A.; Shaik, U.P.; Ade, R.; Mohammed, M.I.; Al Abdulaal, T.H.; Zahran, H.Y.; Yahia, I.S.; Abdel-Wahab, M.S. Impact of Mo-Doping on the Structural, Optical, and Electrocatalytic Degradation of ZnO Nanoparticles: Novel Approach. Crystals 2022, 12, 1239. [Google Scholar] [CrossRef]
- Dubrovskii, V.G.; Timofeeva, M.A.; Tchernycheva, M.; Bolshakov, A.D. Lateral growth and shape of semiconductor nanowires. Semiconductors 2013, 47, 50–57. [Google Scholar] [CrossRef]
- Davis, K.; Yarbrough, R.; Froeschle, M.; White, J.; Rathnayake, H. Band gap engineered zinc oxide nanostructures via a sol–gel synthesis of solvent driven shape-controlled crystal growth. RSC Adv. 2019, 9, 14638–14648. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Chen, J.; Wang, Y.; Wang, J.; Guo, H. Composition dependent band offsets of ZnO and its ternary alloys. Sci. Rep. 2017, 7, 41567. [Google Scholar] [CrossRef] [Green Version]
- AlAbdulaal, T.H.; Ganesh, V.; AlShadidi, M.; Hussien, M.S.A.; Bouzidi, A.; Algarni, H.; Zahran, H.Y.; Abdel-Wahab, M.S.; Yahia, I.S.; Nasr, S. The Auto-Combustion Method Synthesized Eu2O3- ZnO Nanostructured Composites for Electronic and Photocatalytic Applications. Materials 2022, 15, 3257. [Google Scholar] [CrossRef]
- Rastogi, A. Doped ceramics for visible light photocatalysis. In Nanostructured Materials for Visible Light Photocatalysis; Elsevier: Amsterdam, The Netherlands, 2022; pp. 277–293. [Google Scholar] [CrossRef]
- Feng, X.; Gu, L.; Wang, N.; Pu, Q.; Liu, G. Fe/N co-doped nano-TiO2 wrapped mesoporous carbon spheres for synergetically enhanced adsorption and photocatalysis. J. Mater. Sci. Technol. 2023, 135, 54–64. [Google Scholar] [CrossRef]
- Akhter, P.; Arshad, A.; Saleem, A.; Hussain, M. Recent Development in Non-Metal-Doped Titanium Dioxide Photocatalysts for Different Dyes Degradation and the Study of Their Strategic Factors: A Review. Catalysts 2022, 12, 1331. [Google Scholar] [CrossRef]
- Zyoud, S.H.; Yahia, I.S.; Shahwan, M.; Zyoud, A.H.; Zahran, H.Y.; Abdel-Wahab, M.S.; Daher, M.G.; Nasor, M.; Makhadmeh, G.N.; Hassan, N.; et al. Fast and Excellent Enhanced Photocatalytic Degradation of Methylene Blue Using Silver-Doped Zinc Oxide Submicron Structures under Blue Laser Irradiation. Crystals 2023, 13, 229. [Google Scholar] [CrossRef]
- Tabib, A.; Bouslama, W.; Sieber, B.; Addad, A.; Elhouichet, H.; Férid, M.; Boukherroub, R. Structural and optical properties of Na doped ZnO nanocrystals: Application to solar photocatalysis. Appl. Surf. Sci. 2017, 396, 1528–1538. [Google Scholar] [CrossRef]
- Fenoll, J.; Ruiz, E.; Hellín, P.; Flores, P.; Navarro, S. Heterogeneous photocatalytic oxidation of cyprodinil and fludioxonil in leaching water under solar irradiation. Chemosphere 2011, 85, 1262–1268. [Google Scholar] [CrossRef] [PubMed]
- Khatamian, M.; Khandar, A.; Divband, B.; Haghighi, M.; Ebrahimiasl, S. Heterogeneous photocatalytic degradation of 4-nitrophenol in aqueous suspension by Ln (La3+, Nd3+ or Sm3+) doped ZnO nanoparticles. J. Mol. Catal. A Chem. 2012, 365, 120–127. [Google Scholar] [CrossRef]
- Sin, J.-C.; Lam, S.-M.; Lee, K.-T.; Mohamed, A.R. Preparation of cerium-doped ZnO hierarchical micro/nanospheres with enhanced photocatalytic performance for phenol degradation under visible light. J. Mol. Catal. A Chem. 2015, 409, 1–10. [Google Scholar] [CrossRef]
- Lemos, S.C.S.; Rezende, T.K.D.L.; Assis, M.; Romeiro, F.D.C.; Peixoto, D.A.; Gomes, E.D.O.; Jacobsen, G.M.; Teodoro, M.D.; Gracia, L.; Ferrari, J.L.; et al. Efficient Ni and Fe doping process in ZnO with enhanced photocatalytic activity: A theoretical and experimental investigation. Mater. Res. Bull. 2022, 152, 111849. [Google Scholar] [CrossRef]
- Jolaei, S.; Mirzaei, M.; Hassanpour, A.; Safardoust-Hojaghan, H.; Khani, A. Using ZnO, NiO, and ZnO/NiO as Nano Photocatalyst for Removal of Acid Violet and Rhodamine B from Wastewater. J. Nanostruct. 2022, 12, 761–770. [Google Scholar] [CrossRef]
- Palneedi, H.; Park, J.H.; Maurya, D.; Peddigari, M.; Hwang, G.-T.; Annapureddy, V.; Kim, J.-W.; Choi, J.-J.; Hahn, B.-D.; Priya, S.; et al. Laser Processing of Metal Oxides: Laser Irradiation of Metal Oxide Films and Nanostructures: Applications and Advances (Adv. Mater. 14/2018). Adv. Mater. 2018, 30, 1870094. [Google Scholar] [CrossRef] [Green Version]
- Zyoud, S.H.; Ahmed, N.M.; Lahewil, A.S.Z.; Bin Omar, A.F. Micro spot ZnO nanotubes using laser assisted chemical bath deposition: A low-cost approach to UV photodetector fabrication. Sens. Actuators A Phys. 2022, 338, 113485. [Google Scholar] [CrossRef]
- Chauhan, S.; Kumar, M.; Chhoker, S.; Katyal, S.C.; Awana, V.P.S. Structural, vibrational, optical and magnetic properties of sol-gel derived Nd doped ZnO nanoparticles. J. Mater. Sci. Mater. Electron. 2013, 24, 5102–5110. [Google Scholar] [CrossRef]
- Primo, J.D.O.; Horsth, D.F.; Correa, J.D.S.; Das, A.; Bittencourt, C.; Umek, P.; Buzanich, A.G.; Radtke, M.; Yusenko, K.V.; Zanette, C.; et al. Synthesis and Characterization of Ag/ZnO Nanoparticles for Bacteria Disinfection in Water. Nanomaterials 2022, 12, 1764. [Google Scholar] [CrossRef]
- Elhamdi, I.; Souissi, H.; Taktak, O.; Elghoul, J.; Kammoun, S.; Dhahri, E.; Costa, B.F.O. Experimental and modeling study of ZnO:Ni nanoparticles for near-infrared light emitting diodes. RSC Adv. 2022, 12, 13074–13086. [Google Scholar] [CrossRef]
- Karthika, K.; Ravichandran, K. Tuning the microstructural and magnetic properties of ZnO nanopowders through the simulta-neous doping of Mn and Ni for biomedical applications. J. Mater. Sci. Technol. 2015, 31, 1111–1117. [Google Scholar] [CrossRef]
- Belkhaoui, C.; Mzabi, N.; Smaoui, H.; Daniel, P. Enhancing the structural, optical and electrical properties of ZnO nanopowders through (Al + Mn) doping. Results Phys. 2019, 12, 1686–1696. [Google Scholar] [CrossRef]
- Vijayaprasath, G.; Murugan, R.; Mahalingam, T.; Ravi, G. Comparative study of structural and magnetic properties of transition metal (Co, Ni) doped ZnO nanoparticles. J. Mater. Sci. Mater. Electron. 2015, 26, 7205–7213. [Google Scholar] [CrossRef]
- Xu, C.; Cao, L.; Su, G.; Liu, W.; Qu, X.; Yu, Y. Preparation, characterization and photocatalytic activity of Co-doped ZnO powders. J. Alloys Compd. 2010, 497, 373–376. [Google Scholar] [CrossRef]
- Abdel-Wahab, M.; Jilani, A.; Yahia, I.; Al-Ghamdi, A.A. Enhanced the photocatalytic activity of Ni-doped ZnO thin films: Morphological, optical and XPS analysis. Superlattices Microstruct. 2016, 94, 108–118. [Google Scholar] [CrossRef]
- Ali, H.; Alsmadi, A.; Salameh, B.; Mathai, M.; Shatnawi, M.; Hadia, N.; Ibrahim, E. Influence of nickel doping on the energy band gap, luminescence, and magnetic order of spray deposited nanostructured ZnO thin films. J. Alloys Compd. 2019, 816, 152538. [Google Scholar] [CrossRef]
- Wang, Y.S.; Thomas, P.J.; O’Brien, P. Nanocrystalline ZnO with Ultraviolet Luminescence. J. Phys. Chem. B 2006, 110, 4099–4104. [Google Scholar] [CrossRef]
- Mohammed, M.I.; Yahia, I.S. Synthesis and optical properties of basic fuchsin dye-doped PMMA polymeric films for laser applications: Wide scale absorption band. Opt. Quantum Electron. 2018, 50, 159. [Google Scholar] [CrossRef]
- Elilarassi, R.; Chandrasekaran, G. Synthesis and optical properties of Ni-doped zinc oxide nanoparticles for optoelectronic ap-plications. Optoelectron. Lett. 2010, 6, 6–10. [Google Scholar] [CrossRef]
- Jyoti, K.; Singh, A. Green synthesis of nanostructured silver particles and their catalytic application in dye degradation. J. Genet. Eng. Biotechnol. 2016, 14, 311–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Handore, K.; Bhavsar, S.; Horne, A.; Chhattise, P.; Mohite, K.; Ambekar, J.; Pande, N.; Chabukswar, V. Novel Green Route of Synthesis of ZnO Nanoparticles by Using Natural Biodegradable Polymer and Its Application as a Catalyst for Oxidation of Aldehydes. J. Macromol. Sci. Part A 2014, 51, 941–947. [Google Scholar] [CrossRef]
- Azfar, A.K.; Kasim, M.F.; Lokman, I.M.; Rafaie, H.A.; Mastuli, M.S. Comparative study on photocatalytic activity of transition metals (Ag and Ni)-doped ZnO nanomaterials synthesized via sol–gel method. R. Soc. Open Sci. 2020, 7, 191590. [Google Scholar] [CrossRef] [Green Version]
- Devi, K.N.; Devi, S.A.; Singh, W.J.; Singh, K.J. Nickel doped zinc oxide with improved photocatalytic activity for Malachite Green Dye degradation and parameters affecting the degradation. J. Mater. Sci. Mater. Electron. 2021, 32, 8733–8745. [Google Scholar] [CrossRef]
- Ahmad, I.; Aslam, M.; Jabeen, U.; Zafar, M.N.; Malghani, M.N.K.; Alwadai, N.; Alshammari, F.H.; Almuslem, A.S.; Ullah, Z. ZnO and Ni-doped ZnO photocatalysts: Synthesis, characterization and improved visible light driven photocatalytic degradation of methylene blue. Inorganica Chim. Acta 2022, 543, 121167. [Google Scholar] [CrossRef]
- Cai, X.; Cai, Y.; Liu, Y.; Li, H.; Zhang, F.; Wang, Y. Structural and photocatalytic properties of nickel-doped zinc oxide powders with variable dopant contents. J. Phys. Chem. Solids 2013, 74, 1196–1203. [Google Scholar] [CrossRef]
- Abdel-Wahab, M.S. Substrate Temperature Impact on the Structural, Optical and Photo-Catalytic Activity of Sputtered Cu-Doped ZnO Thin Films. J. Electron. Mater. 2021, 50, 4364–4372. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Zhen, W.; Wang, Y.; Zhang, S.; Zhao, Y.; Song, S.; Wu, Z.; Zhang, H. Defect modified zinc oxide with augmenting sonodynamic reactive oxygen species generation. Biomaterials 2020, 251, 120075. [Google Scholar] [CrossRef]
- Zyoud, S.H.; Alalalmeh, S.O.; Hegazi, O.E.; Yahia, I.S.; Zahran, H.Y.; Abu Sara, H.; Bloukh, S.H.; Shahwan, M.; Zyoud, A.H.; Hassan, N.; et al. Novel Laser-Assisted Chemical Bath Synthesis of Pure and Silver-Doped Zinc Oxide Nanoparticles with Improved Antimicrobial and Photocatalytic Properties. Catalysts 2023, 13, 900. [Google Scholar] [CrossRef]
Samples | Solution A | Solution B | Solution C | Total |
---|---|---|---|---|
Pure ZnO | 50 mL | 50 mL | 0 | 100 mL |
ZnO: Ni(1%) | 49.5 mL | 49.5 mL | 1 mL | 100 mL |
ZnO: Ni(2%) | 49 mL | 49 mL | 2 mL | 100 mL |
ZnO: Ni(3%) | 48.5 mL | 48.5 mL | 3 mL | 100 mL |
Samples | (h, k, l) | 2θ, (deg) | d | β, (deg) | I | D, (Å) | a = b, (Å) | c, (Å) | ||
---|---|---|---|---|---|---|---|---|---|---|
Pure ZnO | 100 | 31.38 | 2.8168 | 0.1967 | 899 | 7.3287 | 3.2907 | 5.6997 | 1.2724 | 9.5303 |
002 | 34.11 | 2.6067 | 0.2459 | 586 | 5.9035 | 3.0342 | 5.2555 | −6.6198 | 0.9944 | |
101 | 36.15 | 2.4810 | 0.2459 | 1415 | 5.9358 | 2.8683 | 4.9680 | −11.7278 | −4.5300 | |
ZnO: Ni(1%) | 100 | 31.53 | 2.8258 | 0.7600 | 669 | 1.8974 | 3.2754 | 5.6733 | 0.8028 | 9.0224 |
002 | 34.14 | 2.6157 | 0.7811 | 451 | 1.8586 | 3.0317 | 5.2510 | −7.4501 | 0.965 | |
101 | 36.05 | 2.4879 | 0.8012 | 1062 | 1.8216 | 2.8760 | 4.9813 | −11.4911 | −4.2740 | |
ZnO: Ni(2%) | 100 | 31.61 | 2.8249 | 0.7762 | 281 | 1.8582 | 3.2674 | 5.6593 | 0.5541 | 8.7535 |
002 | 34.17 | 2.6164 | 0.7932 | 307 | 1.8304 | 3.0291 | 5.2465 | −6.7789 | 0.8224 | |
101 | 36.01 | 2.4881 | 0.8033 | 471 | 1.8166 | 2.8790 | 4.9867 | −11.3961 | −4.1712 | |
ZnO: Ni(3%) | 100 | 31.73 | 2.8232 | 0.7901 | 321 | 1.8261 | 3.2553 | 5.6384 | 0.1836 | 8.3527 |
002 | 34.21 | 2.6169 | 0.8077 | 738 | 1.8586 | 3.0256 | 5.2406 | −6.6995 | 0.9083 | |
101 | 35.96 | 2.4892 | 0.8053 | 586 | 1.8118 | 2.8829 | 4.9934 | −11.2770 | −4.0424 |
Samples | Formula | Mass% | Atom% | Sigma | Net | K Ratio Line |
---|---|---|---|---|---|---|
Pure ZnO | O | 18.88 | 48.75 | 0.28 | 2426 | 0.0033915 K |
Zn | 81.12 | 51.25 | 1.29 | 7360 | 0.0253198 K | |
Ni | 0 | 0 | 0 | 0 | ||
Total | 100 | 100 | ||||
ZnO: Ni(1%) | O | 18.18 | 47.55 | 0.26 | 2436 | 0.0034063 K |
Zn | 80.64 | 51.61 | 1.18 | 8038 | 0.0276570 K | |
Ni | 1.18 | 0.84 | 0.26 | 578 | 0.0005570 L | |
Total | 100 | 100 | ||||
ZnO: Ni(2%) | O | 18.19 | 47.52 | 0.25 | 2409 | 0.0033656 K |
Zn | 79.01 | 50.50 | 1.15 | 8277 | 0.0284559 K | |
Ni | 2.80 | 1.99 | 0.31 | 1447 | 0.0013944 L | |
Total | 100 | 100 | ||||
ZnO: Ni(3%) | O | 18.58 | 48.11 | 0.24 | 2654 | 0.0037131 K |
Zn | 77.31 | 48.99 | 1.05 | 9144 | 0.0314740 K | |
Ni | 4.11 | 2.90 | 0.32 | 2417 | 0.0023315 L | |
Total | 100 | 100 |
Synthesis Methods | Catalyst Types | Catalyst Amount | Dyes | Light Sources | % of Deg | , (min−1) | Time, (min) | Refs. |
---|---|---|---|---|---|---|---|---|
Sol–gel | ZnO:Ni(1%) | 100 mg/100 mL | MO, (10 ppm) | UV light | 31.68 | 0.0029 | 160 | [56] |
co-precipitation | ZnO:Ni(6%) | 0.1g/L | Malachite Green, (15 ppm) | UV light | 76 | 0.0042 | 60 | [57] |
Wet chemical | ZnO:Ni(12%) | 10 mg/50 mL | MB, (3 ppm) | Visible light | 98 | 0.081 | 60 | [58] |
Water bath | ZnO:Ni(10%) | 2 mg/50 mL | Rhodamine B | Visible light | 92.2 | 0.0115 | 210 | [59] |
LACBS | ZnO | 10 mg/50 mL | MB, (20 ppm) | Blue laser | 62.12 | 0.01331 | 70 | This work |
LACBS | ZnO: Ni(1%) | 10 mg/50 mL | MB, (20 ppm) | Blue laser | 76.21 | 0.01881 | 70 | This work |
LACBS | ZnO: Ni(2%) | 10 mg/50 mL | MB, (20 ppm) | Blue laser | 76.21 | 0.02325 | 70 | This work |
LACBS | ZnO: Ni(3%) | 10 mg/50 mL | MB, (20 ppm) | Blue laser | 97.93 | 0.04477 | 70 | This work |
ZnO:Ni(3%) | (h, k, l) | 2θ, (deg) | d | β, (deg) | I | D, (Å) | a = b, (Å) | c, (Å) |
---|---|---|---|---|---|---|---|---|
Cycle 1 | 100 | 31.60 | 2.81 | 0.74 | 305 | 1.94 | 3.27 | 5.66 |
002 | 34.27 | 2.63 | 0.80 | 718 | 1.81 | 3.02 | 5.23 | |
101 | 36.04 | 2.48 | 0.81 | 566 | 1.81 | 2.88 | 4.98 | |
Cycle 5 | 100 | 31.58 | 2.82 | 0.73 | 64 | 1.98 | 3.27 | 5.66 |
002 | 34.20 | 2.60 | 0.76 | 601 | 1.91 | 3.03 | 5.24 | |
101 | 36.06 | 2.47 | 0.79 | 103 | 1.86 | 2.88 | 4.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zyoud, S.H.; Ganesh, V.; Che Abdullah, C.A.; Yahia, I.S.; Zyoud, A.H.; Abdelkader, A.F.I.; Daher, M.G.; Nasor, M.; Shahwan, M.; Zahran, H.Y.; et al. Facile Synthesis of Ni-Doped ZnO Nanostructures via Laser-Assisted Chemical Bath Synthesis with High and Durable Photocatalytic Activity. Crystals 2023, 13, 1087. https://doi.org/10.3390/cryst13071087
Zyoud SH, Ganesh V, Che Abdullah CA, Yahia IS, Zyoud AH, Abdelkader AFI, Daher MG, Nasor M, Shahwan M, Zahran HY, et al. Facile Synthesis of Ni-Doped ZnO Nanostructures via Laser-Assisted Chemical Bath Synthesis with High and Durable Photocatalytic Activity. Crystals. 2023; 13(7):1087. https://doi.org/10.3390/cryst13071087
Chicago/Turabian StyleZyoud, Samer H., Vanga Ganesh, Che Azurahanim Che Abdullah, Ibrahim S. Yahia, Ahed H. Zyoud, Atef F. I. Abdelkader, Malek G. Daher, Mohamed Nasor, Moyad Shahwan, Heba Y. Zahran, and et al. 2023. "Facile Synthesis of Ni-Doped ZnO Nanostructures via Laser-Assisted Chemical Bath Synthesis with High and Durable Photocatalytic Activity" Crystals 13, no. 7: 1087. https://doi.org/10.3390/cryst13071087
APA StyleZyoud, S. H., Ganesh, V., Che Abdullah, C. A., Yahia, I. S., Zyoud, A. H., Abdelkader, A. F. I., Daher, M. G., Nasor, M., Shahwan, M., Zahran, H. Y., Abd El-sadek, M. S., Kamoun, E. A., Altarifi, S. M., & Abdel-wahab, M. S. (2023). Facile Synthesis of Ni-Doped ZnO Nanostructures via Laser-Assisted Chemical Bath Synthesis with High and Durable Photocatalytic Activity. Crystals, 13(7), 1087. https://doi.org/10.3390/cryst13071087