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Abstract: Pure and Ni-doped (1%, 2%, and 3%) nanostructures were synthesized using a novel
laser-assisted chemical bath synthesis (LACBS) technique. For the first time, LACBS was used to
create a doping solution utilizing a 7 W blue laser with a 444.4 nm wavelength and a continuous beam.
The Ni-doping concentration was varied by changing the amount of Ni precursor added. All samples
were analyzed using XRD, SEM, EDX, FTIR, UV–Vis, and photocatalysis tests for photodegradation
under blue laser illumination. XRD was used to confirm that the tested ZnO had a hexagonal wurtzite
structure. The crystallite size decreased as the Ni-doping concentration rose. EDX experiments
were conducted to analyze the elemental characteristics of the pure and Ni-doped (1%, 2%, and
3%) nanostructures. The existence of nanoscale hexagonal structures was confirmed through SEM
studies. The band gap values of the pure and Ni-doped ZnO nanostructures decreased as the doping
concentration increased. FTIR studies were conducted to examine the functional groups of the pure
and doped samples. The produced materials exhibited excellent photocatalytic performance toward
the degradation of MB organic dye, an example of a pollutant found in wastewater.
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1. Introduction

Water scarcity is currently the greatest threat to the global climate system. The opti-
mal solution is to treat wastewater containing complex organic compounds. Due to the
importance of this issue, numerous methods for eliminating organic pollutants have been
sought [1,2]. Organic pollutants are carbon-based chemicals that are insoluble in the envi-
ronment and cannot be eliminated by conventional treatment methods [3]. The presence of
these substances in the water used in various activities poses a significant threat to both
humans and wildlife. Therefore, water treatment has garnered global attention, primarily
due to the poor management of available water resources [4]. The poor management of
water resources is exemplified by the difficulty of gaining access to resources and the fact
that demand exceeds supply. Due to the state of the global economy and significant popu-
lation growth, this topic has also garnered considerable interest. Improving and purifying
wastewater for reuse and ensuring sustainable water development are among the best
solutions to the problem of water scarcity. Nevertheless, it is feared that several organic
pollutants could remain in treated water. The widely used water treatment methods include
coagulation, adsorption, and membrane separation [5,6]. The problem with these methods
is that they convert pollutants into solids and only partially remove them.

Consequently, the water treatment procedure necessitates a secondary treatment,
which incurs additional expenses [7]. Therefore, slow oxidation processes are one of
the most promising methods for removing organic pollutants from wastewater. Among
the benefits of oxidation processes are the conversion of organic compounds into green
products, the rapid decomposition of pollutants, the reduction in the toxicity of organic
substances, and the ability to prepare products under ambient pressure and temperature
conditions [8–10].

The solar photocatalytic process has attracted significant global interest due to re-
search demonstrating its effectiveness in removing organic pollutants, its environmentally
friendly qualities, and its ability to enhance water purification [11–13]. There are numerous
methods for the photocatalytic degradation of dyes. Nonetheless, studies have revealed
that semiconductors perform exceptionally well for various applications, including when
doped, defect-induced, used alone, or combined with another material. In the past few
decades, zinc oxide (ZnO) nanostructures in bulk form have been extensively studied due
to their exceptional properties (e.g., thermal, mechanical, and optoelectronic properties),
which make them one of the most versatile and advantageous materials [14,15]. ZnO is
a biosafe and biocompatible semiconductor with a large band gap of 3.37 eV and a high
excitation binding energy of 60 meV [16]. Nanostructured ZnO is a material with a wide
range of technological applications. It is utilized in numerous fields and applications, such
as energy applications, photoconductive sensors, gas sensors, solar cells, photodetectors,
and various forms of environmental and biomedical research [17–21].

Additionally, ZnO, in the form of nanorods, nanobelts, nanotubes, and nanowires, is
synthesized with specific methods and under particular conditions. The ability to control
ZnO’s geometry further amplifies its versatility. Varying the morphology of ZnO—ranging
from nanoparticles and nanorods to nanowires and thin films—can influence its surface-
to-volume ratio, crystallinity, and orientation, all of which critically affect its performance
in different applications. The morphologically dependent properties of ZnO enable the
design of more efficient and optimized devices for specific roles [22–27]. Using ZnO nanos-
tructures in photocatalysis applications has shown promising results with respect to water
treatment [28,29]. Oxidizing agents, such as the reactive oxygen species photogenerated
in ZnO, can successfully degrade organic dye substances. The doping of materials with
elements such as Ni, Ag, Mg, Al, Mn, Au, etc., used in the photocatalysis method allows for
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the effective development of semiconductor oxides by improving their efficiency or shifting
their activity to specific wavelength regions. Additionally, the properties and performance
of ZnO can be further modified and enhanced by introducing defects alongside the doping
process. Intrinsic defects, including vacancies and interstitials, and extrinsic doping, typi-
cally with transition metals or non-metals, can profoundly impact ZnO’s electrical, optical,
and magnetic behavior. These manipulations can alter charge carrier concentrations, mod-
ify band structures, and tune ZnO’s physical and chemical properties, making it suitable
for many applications [30–32]. Through the deposition of metallic dopants on the surface
of ZnO, new energy levels can be generated to produce a photogenerated electron from the
conduction band and thus reduce the recombination effects [33,34].

Photodegradation was examined to measure the efficiency of using ZnO and TiO2
in the photocatalyst technique. The technique was applied to fungicides in contaminated
water under solar exposure, and it was found to be nonstoichiometric when using ZnO,
making it a more effective photocatalyst than TiO2 [35]. Khatamian et al. [36] applied La3+,
Sm3+, and Nd3+ doping to ZnO to enhance its photoactivity toward the degradation of 4-
nitrophenol. At the same time, Sin et al. [37] used Ce/ZnO to improve ZnO’s photocatalytic
destruction performance under sunny conditions.

ZnO doped by Ni materials exhibited high photocatalytic efficiency equal to 96.9%
toward the degradation of RhB and that of 99.8% for 4-NP. This enhanced performance can
be related to a band structure that allows for the greater separation of e- /h+ pairs, thereby
lowering the recombination rate and generating levels that efficiently boost photocarrier
transport [38]. Jolaei, S. et al. [39] prepared ZnO NPs, NiO NPs, and ZnO/NiO nanocom-
posites that showed excellent photocatalytic activity. However, ZnO/NiO nanocomposites
provided better removal (93.8%) efficiency compared to ZnO NPs (86.1%) and NiO NPs
(81.5%) toward acid violet after 75 min of irradiation. Thus, it can be surmised from the
previous studies that the use of doped ZnO as a photocatalyst either yielded high efficiency
at a longer exposure time or low efficiency.

Modern laser technology and a better understanding of the interaction between lasers
and target materials are required to facilitate rapid processing and technological advances
that can produce excellent nanomaterials. Laser-assisted systems run in pulse mode or
continuous wave mode with wavelengths differing from UV to IR. In the manufacture of
metal oxide nanoparticles, the application of a laser can induce heating effects, provide
controllable chemical reactions, and generate other complicated nucleation and parti-
cle enhancement phenomena. These affordances are due to this technique’s simplicity,
expandability, high returns, and inexpensiveness [40,41]. Laser-assisted chemical bath
synthesis (LACBS) technology began to be widely used because it facilitates the production
of nanomaterials in several forms and can be used as a mechanism to sense the elements
in manufacturing. The essential step of this technique is the photothermal effect from
exposure by a focused laser on the target while ensuring that it has high temperature
control resulting from the exposure. The synthesis parameters and physical properties are
carefully controlled, and the efficiency of the synthesis of metal oxides using the LACBS
technique has shown considerable improvement [41,41].

In this work, LACBS was used as a simple, catalyst-free hydrothermal technique for
producing pure ZnO and ZnO: Ni at a low temperature. LACBS has emerged as a viable
technique for producing nanostructures or nanoparticles with multiple morphologies.
It constitutes a critical element in sensing mechanisms due to its simplicity, ability to
be quickly conducted, ability to produce high yields, inexpensiveness, ability to yield
products with large surface-to-volume ratios, and adaptability for scaling up. In this
method, synthesized nanopowders were collected to produce nanorods and nanotubes
with high crystallinity, which were used in photodegradation. Undoped and Ni-doped
ZnO nanostructures, prepared using the LACBS technique, were used as photocatalysts for
degrading MB by exposing it to a blue laser. This research aimed to determine the effects
induced by certain experimental parameters, such as the Ni-doping ZnO concentration, the
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light source, and direct exposure time. ZnO: Ni nanoflakes are necessary for improving
photodegradation under blue laser irradiation.

2. Methodology

The enhancement of the photodegradation process using Ni-doped ZnO nanostruc-
tures is the primary focus of our investigation. Additionally, a comparative evaluation
was conducted to assess this technique’s efficacy by comparing it with the results obtained
when using pristine ZnO.

2.1. Materials

High-purity zinc acetate dihydrate [Zn(CH3COO)2.(H2O)2 (≥99.99%)] and hexam-
ethylenetetramine [C6H12N4, (99.9%)] were procured from Sigma-Aldrich and employed
in their as-received condition without further purification. Nickel (II) chloride [NiCl2] was
obtained from Pub-Chem, which is based in the United States. A simulated wastewater
containing methylene blue (MB) [C16H18CIN3C, (sourced from Merck, Rahway, NJ, USA)]
was utilized to evaluate degradation performance.

2.2. Preparation of Stock Solutions

Specific antecedent solutions were synthesized, for which ultra-pure water was used
as the deposition medium. In the fabrication process, ethanol, acetone, and deionized water
were employed as cleaning agents. Preparations of reagents consisting of Zinc Oxide (ZnO,
0.1 M): solution A (zinc acetate (ZnC4H6O4)): 2.195 g of ZnC4H6O4 were combined with
50 mL of ultra-pure water, serving as the deposition medium, and thoroughly agitated
using a digital stirrer (200 rpm). The mixture was sonicated to facilitate dissolution. Solution
B ((hexamethylenetetramine (C6H12N4)): 1.402 g of C6H12N4) was incorporated into 50 mL
of ultra-pure water, followed by sonication and rigorous stirring to achieve a uniform
composition. Preparations of metal salt solutions ((0.1 M): Solution C (nickel (II) chloride
(NiCl2)): 0.648 g of NiCl2) were blended with 50 mL of ultra-pure water using a stirring
device and subsequently sonicated to attain homogeneity (Table 1).

Table 1. The amounts of solutions.

Samples Solution A Solution B Solution C Total

Pure ZnO 50 mL 50 mL 0 100 mL

ZnO: Ni(1%) 49.5 mL 49.5 mL 1 mL 100 mL

ZnO: Ni(2%) 49 mL 49 mL 2 mL 100 mL

ZnO: Ni(3%) 48.5 mL 48.5 mL 3 mL 100 mL

2.3. Synthesis of ZnO Nanoparticles

The LACBS technique was employed to synthesize high-purity ZnO nanopowder.
Solution B was gradually introduced into solution A through a dropwise approach while
maintaining persistent agitation at a rate of 200 rotations per minute (rpm) for a duration
of 25 min at an ambient temperature of 28 ◦C. Subsequently, the resulting mixture was
subjected to continuous-wave semiconductor blue laser irradiation, characterized by a
wavelength (λ) of 444.4 nm and a power of 7 W, oriented vertically toward the solution for
an extended period of 130 min at an elevated temperature of 60 ◦C.

Post-irradiation, the residual matter was isolated from the mixture via a filtration
process, followed by a triple rinse using ethanol as the solvent. The isolated zinc oxide was
then dried for 35 min at a temperature of 100 ◦C. As a final step, the gathered nanopowder
was annealed in a controlled-temperature oven for a period of 4 h at an approximate
temperature of 400 ◦C, thus ensuring thorough decomposition and the removal of any
remaining organic impurities.
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Laser irradiation facilitates a controlled, high-temperature environment, which pro-
motes the efficient synthesis of high-quality ZnO crystals. The process involves using
a high-power laser beam focused onto a mixture of zinc and nickel precursors, which
leads to the evaporation and subsequent condensation of the precursor materials, thereby
producing pure ZnO and Ni-doped ZnO particles. Incorporating Ni ions into the ZnO
lattice during the synthesis process allows for the doping of ZnO with Ni.

2.4. Synthesis of Ni-Doped ZnO Nanoflakes

LACBS-synthesized Ni-doped ZnO was generated through the gradual integration of
solutions B and C into solution A while maintaining continuous agitation (at 200 revolutions
per minute) for a duration of 30 min at a temperature of 28 ◦C. Initially, one should adhere to
the methodologies outlined in Section 2.3. Subsequently, one should perform the procedures
described above using an assortment of Nickel (II) Chloride (NiCl2) concentrations (1%,
2%, and 3% of Ni-doped ZnO), as depicted in Figure 1.
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Figure 1. Schematic diagram illustrating the working principle for synthesizing pure and Ni-doped
ZnO nanostructures.

2.5. Photocatalytic Degradation Study

An MB solution with a concentration of 20 parts per million (ppm) was investigated
under blue laser light irradiation (λ = 444.4 nm wavelength) during the photocatalytic
degradation process at ambient temperature within a shielded evacuator to eliminate
any thermal catalytic influence. A predetermined quantity (10 mg) of synthesized cata-
lysts, including pure ZnO, ZnO:Ni(1%), ZnO:Ni(2%), and ZnO:Ni(3%), was combined with
the 20 ppm MB solution and stirred continuously under dark conditions. To achieve
adsorption–desorption equilibrium between water, catalysts, and MB, the mixture was
agitated for 15 min. Subsequently, the reaction mixture was exposed to blue laser light
for the degradation of MB. During the irradiation process, a specific volume (5 mL) of the
solution was sampled every 5 min for analysis. The absorption spectra of the samples at
the maximum absorption wavelength (λ = 656.4 nm) were determined using a UV–Vis
spectrophotometer. The effectiveness of dye degradation was assessed using the following
equations [32]:

C
Co

=
A
Ao

, (1)

ln
Co

C
= kappt, (2)
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PDE% =

(
1− C

Co

)
× 100%, (3)

where Co denotes the initial concentration of MB prior to any exposure to light, while C
signifies the MB concentration at a specific time point following light irradiation. Moreover,
Ao refers to the highest absorption peak observed before irradiation, whereas A represents
the corresponding peak after irradiation has occurred. PDE% represents the photodegra-
dation efficiency, while kapp represents the rate of degradation. Figure 2 illustrates the
schematic representation of the photocatalytic investigation being conducted.
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2.6. Characterization

An X-ray diffractometer produced by Rigaku, Japan, was employed to investigate
the crystallinity of both pristine and nickel-doped ZnO nanostructures. These synthesized
nanostructures’ morphological characteristics and elemental compositions were exam-
ined through field-emission scanning electron microscopy (FE-SEM, JEOL JSM-7600F) in
conjunction with the use of an energy-dispersive X-ray (EDX) detector. The optical prop-
erties of the materials were probed utilizing a UV–Visible spectrometer, specifically the
P.E. Lambda 750S model. Additionally, the optical absorption spectra of the specimens
were corroborated using a UV–Vis spectrum analyzer. To gain insight into the products’
molecular structures, Fourier-transform infrared spectroscopy (FTIR) was employed.

3. Results and Discussion
3.1. X-ray Diffraction Studies

Figure 3 illustrates the X-ray diffraction patterns for the pure and Ni-doped nanos-
tructures (1%, 2%, and 3%). The distinct peaks in both the pure and doped specimens
correspond to the indices (100), (002), (101), (102), (110), (103), (200), (112), (201), (004), and
(202), which align well with JCPDS card number 89-0510 [42]. The detected prominent
peaks confirm the presence of a hexagonal wurtzite structure in the ZnO, which was char-
acterized by the P63mc space group [42]. Additionally, the diffraction patterns revealed no
secondary phase due to Ni doping. This absence of a secondary phase might be attributed
to the replacement of Zn ions by doped Ni ions, which, in turn, is likely due to the similar
ionic radii of Ni2+ (0.069 nm) and the substituted Zn2+ ions (0.074 nm).
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The pronounced and intense peaks in the XRD patterns demonstrate the exceptional
crystallinity of the synthesized nanostructures. The most intense peaks, such as (100),
(002), and (101), are predominant in the prepared nanostructures. The diffraction peak
intensities of (100) and (002) increase with an increasing doping concentration, signifying
high crystallinity and a preferential degree of nanostructure growth along the a-axis and
c-axis. Conversely, the diffraction peaks related to the (101) plane decrease in intensity with
an increasing doping concentration for both the pure and doped samples, indicating high
crystallinity and the preferential growth of nanostructures along the b-axis. The dominant
peaks’ orientations along the a-axis, b-axis, and c-axis at (100), (101), and (002), respectively,
substantiate that the synthesized samples exhibit a hexagonal wurtzite structure. The
diminished crystallinity along the most intense (101) peak may be due to the varying
solubility of zinc acetate depending on the solvent. Zinc acetate dissolves more readily in
deionized water compared to other solvents, thereby reducing the size of nanocrystallites.
The decrease in crystallite size may also be attributed to the fact that the nanostructures
were prepared using a laser-assisted process. In this case, the solution underwent laser
irradiation during the preparation process, initiating chemical reactions that generated tiny
ZnO nanoparticles.

Table 2 presents the structural parameters of the pure and Ni-doped ZnO nanostruc-
tures synthesized via LACBS with varying doping concentrations. The analysis includes
the determination of peak positions (2θ), intensity, full width at half maximum (FWHM)
values, lattice constants (a, b, and c), and internal strain (εa, εc) along the diffraction peaks
of the (100), (002), and (101) planes.
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Table 2. Structural parameters of pure and Ni-doped ZnO nanostructures.

Samples (h, k, l) 2θ, (deg) d β, (deg) I D, (Å) a = b, (Å) c, (Å) εa εc

Pure ZnO

100 31.38 2.8168 0.1967 899 7.3287 3.2907 5.6997 1.2724 9.5303

002 34.11 2.6067 0.2459 586 5.9035 3.0342 5.2555 −6.6198 0.9944

101 36.15 2.4810 0.2459 1415 5.9358 2.8683 4.9680 −11.7278 −4.5300

ZnO: Ni(1%)

100 31.53 2.8258 0.7600 669 1.8974 3.2754 5.6733 0.8028 9.0224

002 34.14 2.6157 0.7811 451 1.8586 3.0317 5.2510 −7.4501 0.965

101 36.05 2.4879 0.8012 1062 1.8216 2.8760 4.9813 −11.4911 −4.2740

ZnO: Ni(2%)

100 31.61 2.8249 0.7762 281 1.8582 3.2674 5.6593 0.5541 8.7535

002 34.17 2.6164 0.7932 307 1.8304 3.0291 5.2465 −6.7789 0.8224

101 36.01 2.4881 0.8033 471 1.8166 2.8790 4.9867 −11.3961 −4.1712

ZnO: Ni(3%)

100 31.73 2.8232 0.7901 321 1.8261 3.2553 5.6384 0.1836 8.3527

002 34.21 2.6169 0.8077 738 1.8586 3.0256 5.2406 −6.6995 0.9083

101 35.96 2.4892 0.8053 586 1.8118 2.8829 4.9934 −11.2770 −4.0424

The crystallinity of the dominant peak decreases as the concentration of Ni dopant
increases, suggesting that the introduction of Ni atoms into the ZnO matrix disrupts the
crystalline structure. The change in the internal strain values also indicates the impact of Ni
doping on the pure ZnO matrix. The negative strain values are suggestive of compressive
strain, which can be attributed to the presence of defects and impurities. Moreover, the
shift in the diffraction peaks of the (100), (002), and (101) planes for both the pure and
doped samples was calculated using Bragg’s law, which relates the wavelength of X-rays
diffracted by the crystal lattice to the interatomic spacing of the lattice planes [43]:

nλ = 2dsinθ, (4)

where n, θ, λ, and d represent the order of diffraction, the diffraction angle, X-ray wave-
length, and the distance between planes, respectively. Crystallite size (D) was calculated
using the Debye–Scherer formula [44], as follows:

D
(

Å
)
=

kλ

βcosθ
, (5)

where k is the constant (k= 0.9), θ is the Bragg diffraction angle, λ is the X-ray source
wavelength (λ = 1.5427), and β is FWHM. The lattice constants (a, b, and c) of the doped
and undoped ZnO were calculated using Bragg’s law [33]:

a
(

Å
)
= b

(
Å
)
=

λ√
3sinθ

, (6)

c
(

Å
)
=
√

3a, (7)

where θ is the diffraction peak angle and λ is the wavelength of the X-ray source. The
values of the lattice parameters (a and c) are given in Table 2.

εa and εc represent strain along different crystallographic axes of the ZnO structure.
The different values of strain (εa and εc) arise from the anisotropic mechanical properties
of ZnO. This anisotropy is due to the compound’s hexagonal structure, where the ‘a’ and
‘c’ axes are not equivalent. In general, mechanical or thermal stresses can induce varying
strain along these different directions, which explains the observed difference in the values
of εa and εc. The doping process changes the strain response, as it can alter the lattice
parameters and, as a result, the mechanical properties of ZnO. Therefore, we report the
strain along ‘c’ axis (εc), as this direction is more sensitive to these alterations and, therefore,
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best illustrates the impact of doping on the ZnO samples. The strain (εa) of the undoped
and doped ZnO nanostructures was calculated using the following equation [45]:

εa =
a− ao

ao
× 100%, (8)

The strain (εc) of the pure and doped samples was calculated using the following
equation [46]:

εc =
c− co

co
× 100%, (9)

where ao and co are the standard lattice constants for unstrained ZnO determined from the
X-ray diffraction pattern data and the standard lattice constant for unstrained ZnO (JCPDS
card no 89-0510), respectively [42].

3.2. Scanning Electron Microscopy (SEM)

Figure 4 presents a morphological analysis performed on the pure and Ni-doped
nanostructures with varying doping concentrations of 1%, 2%, and 3%. The images were
captured at different magnifications to provide a detailed view of the samples. In all the
samples, the figures reveal densely packed and uniform hexagonal particles. However, their
morphologies transform into hexagonal flakes as the doping concentration increases from
1% to 3%. Notably, Figure 4c–g displays a bundle of hexagonal flakes that exhibit a clear
orientation [47]. These findings are consistent with the X-ray diffraction (XRD) results and
suggest that the doping and laser assistance during the growth process contributed to the
morphological changes. The 3D hexagonal flakes possess a higher surface-to-volume ratio
than the 1D structures of the nanoparticles, making them ideal for photonic applications
due to their ability to capture additional light. Moreover, their larger surface area makes
them highly effective in reducing concentrations of harmful dyes and other impurities in
water purification applications. The application of Ni-doping to nanostructures has been
widely studied due to its ability to give rise to favorable properties, such as enhanced
electronic, magnetic, and catalytic activity. The doping of Ni in the hexagonal flakes
improves their structural stability and enhances their electrocatalytic activity, which are
essential characteristics in energy conversion applications [47–49]. The mechanism behind
the nanostructure shape transition upon the addition of Ni involves the following:

ZnO nanostructures typically grow along their c-axis due to the polar nature of this
crystallographic direction. As such, the formation of nanorods, which grow along this
direction, is a common outcome of ZnO synthesis. However, adding Ni ions into the ZnO
crystal lattice during synthesis can disrupt this growth process. Ni ions, with their higher
charge density compared to Zn ions, have a greater tendency to be adsorbed onto the non-
polar faces of the ZnO crystal, thus inhibiting growth along the c-axis and promoting lateral
growth instead. This results in the formation of a flake-like structure, as the crystal expands
to a greater degree in the lateral direction than it does along the c-axis. Additionally, the
doping of Ni could result in the creation of additional nucleation sites on the surface of
the ZnO crystal, thereby promoting the growth of new crystal faces and contributing to
the flake-like structure. The transition from nanorods to nanoflakes upon Ni doping could
also be attributed to the change in surface energy of the nanostructures. Adding Ni might
reduce the surface energy of the non-polar faces of ZnO, making it easier for the nanos-
tructures to grow in the lateral direction, which leads to the formation of nanoflakes. This
shape transition could enhance the photocatalytic properties of the ZnO nanostructures by
increasing their surface area and the number of active sites available for the photodegrada-
tion process. Furthermore, Ni doping can introduce new energy levels within the bandgap
of ZnO, thereby enhancing its light absorption capabilities and reducing the recombination
rate of electron–hole pairs, leading to improved photocatalytic performance.
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(g,h) ZnO: Ni(3%).

3.3. Energy Dispersive X-ray Spectroscopy (EDX)

The elemental compositions of the pure and Ni-doped (at levels of 1%, 2%, and 3%)
nanostructures were analyzed using energy-dispersive X-ray spectroscopy (EDX). Figure 5
and Table 2 provide confirmation of the presence of Zn, O, and Ni in the doped samples
and of Zn and O in the pure ZnO samples. In the pure ZnO samples, the Zn:O ratio
is approximately 51.25% and 48.75%, respectively, indicating that there are no residual
impurities. However, in the doped samples, the percentages of detected Ni are 0.84 At%,
1.99 At%, and 2.90 At% for the 1%, 2%, and 3% doped samples, respectively. The elemental
profiles for both the pure and Ni-doped ZnO samples are presented in Table 3.
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Figure 5. (a–d). Elemental analysis of (a) pure ZnO, (b) ZnO: Ni(1%), (c) ZnO: Ni(2%), and
(d) ZnO: Ni(3%).

Table 3. EDX analysis of the pure and Ni-doped ZnO nanoparticles.

Samples Formula Mass% Atom% Sigma Net K Ratio
Line

Pure ZnO

O 18.88 48.75 0.28 2426 0.0033915 K

Zn 81.12 51.25 1.29 7360 0.0253198 K

Ni 0 0 0 0

Total 100 100

ZnO: Ni(1%)

O 18.18 47.55 0.26 2436 0.0034063 K

Zn 80.64 51.61 1.18 8038 0.0276570 K

Ni 1.18 0.84 0.26 578 0.0005570 L

Total 100 100

ZnO: Ni(2%)

O 18.19 47.52 0.25 2409 0.0033656 K

Zn 79.01 50.50 1.15 8277 0.0284559 K

Ni 2.80 1.99 0.31 1447 0.0013944 L

Total 100 100

ZnO: Ni(3%)

O 18.58 48.11 0.24 2654 0.0037131 K

Zn 77.31 48.99 1.05 9144 0.0314740 K

Ni 4.11 2.90 0.32 2417 0.0023315 L

Total 100 100

3.4. Optical Studies/UV–Vis Absorption

Figure 6a displays the UV–Vis absorbance spectra of the pure ZnO and Ni-doped ZnO
nanostructures, with Ni-doping concentrations of 1%, 2%, and 3%, as a function of the light
wavelength in the range of 200–800 nm. In the pure ZnO samples, a prominent absorption
edge at 380 nm can be observed in the UV–Vis spectrum. As the Ni-doping concentration
increases, the absorption edge shifts towards a higher wavelength region, leading to a
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redshift and a band-narrowing effect [50]. In the UV region, the absorption rate of the ZnO
is relatively large, namely, in the range of 200−380 nm, while the absorption rate starts to
increase in the range of 380 nm or more for the doped samples.
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To elaborate, as the Ni-doping concentration increases, the material’s absorption edge,
which represents the lowest energy (or longest wavelength) at which a material can absorb
light, is observed to shift towards a higher wavelength region. This shift is known as a
redshift because higher wavelengths correspond to the red end of the visible light spectrum.
Concurrently, a ‘band-narrowing effect’ indicates that the semiconductor material’s energy
gap between the valence and conduction bands is decreasing. These alterations in optical
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properties are due to changes in the electron structure of the ZnO induced by Ni-doping.
Regarding the UV region, the rate at which ZnO is absorbed is comparatively substantial
within the wavelength range of 200-400 nanometers; however, it begins to experience a
reduction in its absorption capacity at wavelengths exceeding 380 nanometers. These
interactions could involve phenomena such as surface plasmon resonance or localized
electric field enhancements, which significantly increase a material’s optical absorption.

The 3% Ni-doped ZnO sample exhibited a wide photo absorption range in the visible
spectral regions, which is advantageous for photo sensor applications as it produces more
charge carriers. The optical bandgap of the samples was determined using Tauc’s equation,
which is used to calculate the energy difference between the lowest unoccupied molecular
orbital (LUMO) and the highest occupied molecular orbital (HOMO). Ni doping had a
significant effect on the optical properties of the ZnO nanostructures. It modified the
electronic band structure and created new energy states in the bandgap, thereby changing
the nanostructures’ optical properties. The redshift in the absorption edge can be attributed
to the substitutional doping of Ni ions in the ZnO lattice and the resulting decrease in the
lattice constant. The narrowing of the bandgap is due to the formation of Ni-related defect
states in the bandgap [51]

(αhυ)1/n = B(hυ − Eg), (10)

where hυ is the incident photon energy; h is the Planck constant; α stands for the absorption
coefficient; B is a constant known as the Tauc parameter, which holds crucial information
about the material structure; Eg stands for the optical energy bandgap; and n varies
depending on the type of electron transition, i.e., equaling 1/2 or 3/2 for direct transitions
and 2 or 3 for indirect transitions [52]. The (αhυ)2 versus photon energy (hυ) plots for all
the prepared pure and Ni-doped ZnO samples are displayed in Figure 6b. The band gap
values for the present samples were calculated by extrapolating the linear fit from the slope
to the photon energy axis. The band gap value of the pure ZnO nanostructures was 3.3 eV,
which aligns with the reported data [53]. The Ni-doped ZnO samples with concentrations
of 1%, 2%, and 3% have bandgaps (Eg) of 3.22, 3.16, and 3.03 eV, respectively. As the dopant
ratio is increased, the bandgap values decrease. The presence of oxygen vacancies, which
facilitate the easy transfer of electrons from the valence band (VB) to the conduction band
(CB), is responsible for causing the bandgap to decrease [54]. In other words, the impurity
states of ZnO become more delocalized and overlap with the valance band edge as the
number of oxygen vacancies increases, thus narrowing the overall band gap.

3.5. FTIR Studies

The wurtzite structures of the pure and Ni-doped ZnO nanostructures were investi-
gated using Fourier transform infrared (FTIR) spectroscopy. The analysis was carried out
in the range of 500 cm−1 to 4000 cm−1, and the spectra for the pure and doped samples are
illustrated in Figure 7. The M-O stretching mode, which is associated with the functional
groups, was assigned to the spectral region between 500 and 600 cm−1. Furthermore, the
peaks at around 500 cm−1 were attributed to the E2 (L.O.) mode, which is typical of ZnO’s
wurtzite structure [55]. The asymmetric and symmetric stretching vibration modes of C=O
were observed in the range of 1300 cm−1 to 1600 cm−1 [53]. The peak at 1500 cm−1 was also
ascribed to the stretching modes of vibrations in symmetric and asymmetric C=O bonds
and Zn(OH)2 bending vibrations. The weak band observed near 800 cm−1 was attributed
to the metal–oxygen vibration frequency and the result of changes in the microstructural
characteristics induced by adding Ni to the Zn-O lattice [53]. Furthermore, the Ni-doping
level varied from 1% to 3%, which may have affected the vibrational modes of the samples.
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3.6. Photocatalytic Study
3.6.1. Photocatalytic Degradation Studies

In this study, the photocatalytic activity of both the pure and Ni-doped zinc oxide
samples during the degradation process of MB dye was comprehensively investigated.
The absorption spectra of the samples were analyzed before and after exposure to a
blue laser, which had a wavelength of 444.4 nm, a light power of 7 watts, and an area
of irradiation of 44.18 cm2. This wavelength falls within the visible light range. It
is close to the absorption edge of ZnO, making it an ideal choice for the excitation
of the photocatalyst and the enhancement of the photocatalytic process. However,
the photocatalytic activity of pure ZnO is limited due to its wide bandgap and fast
recombination of photogenerated electron–hole pairs. Doping ZnO with metal ions such
as Ni- can improve its photocatalytic activity by narrowing its bandgap and reducing
the recombination rate of electron–hole pairs. To assess the photocatalytic activity of
the pristine and Ni-doped ZnO samples, the absorption spectra of the samples were
analyzed before and after exposure to a blue laser. The results of the absorption spectra
analyses are presented in Figure 8a–d. The absorption spectra analyses revealed that
Ni-doped ZnO exhibited higher photocatalytic activity in the degradation process of
MB dye than pristine ZnO. This was attributed to improved charge separation and the
reduced recombination rate of electron–hole pairs in the Ni-doped ZnO.

The decrease in the absorption spectra of MB over time indicates significant photo-
catalytic activity, which is a result of the creation of hydroxyl radicals due to electron pair
migration to the surface. Adding Ni to ZnO catalysts with reduced band gaps improved
the efficacy of decomposing organic dyes. This improvement is due to the increased surface
area, oxygen vacancies, and the generation and spatial separation of electron–hole pairs.
The researchers employed the photocatalytic kinetics method to accurately measure the
dye degradation rate. Figure 9 displays the change in the ratio of the dye concentration
(C) to its initial concentration (Co) over time. By tracking this ratio, the researchers could
determine the rate at which the dye decomposes.
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The degradation of MB through photodegradation was initiated by a blue laser. This
implies that the degradation rate depends on the concentration of MB present, as depicted
in Figure 10.
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Figure 11 depicts a clear and direct correlation between the natural logarithm of the
MB concentration ratio and time. The graph presents the initial MB concentration and
the concentration at a specific time, thus providing valuable insights into the kinetics
of the photocatalytic reaction. To calculate the rate constants of the photocatalytic reac-
tions, Equation (2) was utilized to determine the slopes of the linear plots. A higher rate
constant implies more efficient photocatalytic degradation. Certain structures, such as one-
dimensional nanostructures, exhibit increased electron transfer rates, leading to superior
photocatalytic performance due to their exceptional ability to promote electron mobility.
Furthermore, several factors, including surface imperfections, surface area, and surface
reactivity, can impact the effectiveness of photocatalysts. To enhance the photocatalytic
characteristics of ZnO and Ni-doped ZnO, additional dopants can be incorporated, or the
synthesis process can be modified. These adjustments can further augment the photocat-
alytic performance of the catalysts and ultimately improve the efficiency of the reaction.
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Table 4 provides valuable rate constant data that can be used to evaluate the photocat-
alytic performance of both undoped and Ni-incorporating ZnO in terms of MB degradation.
The results indicate that among the different samples examined, 3% Ni-doped zinc oxide
exhibited the most effective level of MB degradation. These findings suggest that the newly
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developed pure and Ni-doped ZnO photocatalysts have improved efficiency compared
to earlier versions. Notably, this study underscores the need for further research into
using ZnO and Ni-doped ZnO nano-photocatalysts for organic dye oxidation. Despite
their demonstrated effectiveness, these materials remain understudied, and a consider-
able knowledge gap needs to be addressed. Future studies could focus on exploring the
mechanisms underlying the improved performance of Ni-doped ZnO, optimizing the
preparation methods, and assessing the photocatalytic activity of these materials for other
organic pollutants.

Table 4. Comparison between efficiencies of different catalyst systems from previous studies.

Synthesis
Methods

Catalyst
Types

Catalyst
Amount Dyes Light

Sources % of Deg kapp, (min−1) Time,
(min) Refs.

Sol–gel ZnO:Ni(1%) 100 mg/100 mL MO, (10 ppm) UV light 31.68 0.0029 160 [56]

co-precipitation ZnO:Ni(6%) 0.1g/L Malachite Green,
(15 ppm) UV light 76 0.0042 60 [57]

Wet chemical ZnO:Ni(12%) 10 mg/50 mL MB, (3 ppm) Visible light 98 0.081 60 [58]

Water bath ZnO:Ni(10%) 2 mg/50 mL Rhodamine B Visible light 92.2 0.0115 210 [59]

LACBS ZnO 10 mg/50 mL MB, (20 ppm) Blue laser 62.12 0.01331 70 This work

LACBS ZnO: Ni(1%) 10 mg/50 mL MB, (20 ppm) Blue laser 76.21 0.01881 70 This work

LACBS ZnO: Ni(2%) 10 mg/50 mL MB, (20 ppm) Blue laser 76.21 0.02325 70 This work

LACBS ZnO: Ni(3%) 10 mg/50 mL MB, (20 ppm) Blue laser 97.93 0.04477 70 This work

3.6.2. Photocatalytic Stability

The efficacy of photodegradation in decomposing dyes was investigated using Equation (2),
and the results are presented graphically in Figure 12. The dye mixture’s adsorption values
upon exposure to blue laser illumination for five cycles, with agitation applied for 60 min, were
noted. It was observed that the ZnO:Ni(3%) photocatalyst exhibited consistent and robust perfor-
mance, maintaining approximately 93.2% photodegradation after five consecutive cycles. The
material’s potential application in water purification processes was sparked by this observation.
Additionally, it was noted that the photocatalyst retained its activity after multiple cycles, which
is a critical consideration for practical utilization in wastewater treatment.

Interestingly, as shown in Table 5, the XRD pattern of the catalyst specimen (ZnO:Ni(3%))
exhibits no signs of degradation or phase inconsistency, even after being subjected to five
cycles, as shown in Figure 13. The lattice parameters have very slight changes after five cycles
of degradation of the dyes, thus indicating the high stability of the studied catalytic materials.
This exceptional durability can be attributed to the strong covalent bonding within the ZnO
lattice and the efficient incorporation of nickel ions, which enhance the material’s structural
integrity. Additionally, the presence of the Ni dopant in the catalyst successfully suppresses
the recombination of photogenerated electron–hole pairs, which is a key factor in enhancing
photocatalytic efficiency. These findings showed that this doped metal oxide possesses
exceptional photocatalytic capabilities, indicating its potential as a promising candidate for
various environmental applications. This can be attributed to its unique properties, including a
high surface area and enhanced light absorption, contributing to its remarkable photocatalytic
performance. The slight changes in the lattice parameters and the drop in efficiency can be
attributed to several factors. Firstly, the accumulation of by-products on the photocatalyst’s
surface can reduce the number of active sites available for photodegradation. Secondly, the
aggregation of nanoparticles over time can decrease the surface area available for reactions,
thus reducing the degradation rate.
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Table 5. Comparison between the XRD petameters of cycle 1 and cycle 5 for ZnO:Ni(3%).

ZnO:Ni(3%) (h, k, l) 2θ, (deg) d β, (deg) I D, (Å) a = b, (Å) c, (Å)

Cycle 1

100 31.60 2.81 0.74 305 1.94 3.27 5.66

002 34.27 2.63 0.80 718 1.81 3.02 5.23

101 36.04 2.48 0.81 566 1.81 2.88 4.98

Cycle 5

100 31.58 2.82 0.73 64 1.98 3.27 5.66

002 34.20 2.60 0.76 601 1.91 3.03 5.24

101 36.06 2.47 0.79 103 1.86 2.88 4.98
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3.6.3. Photocatalysis Mechanism

The degradation of organic dyes using photocatalysis is highly dependent on the
generation of electron–hole pairs, which requires semiconductor catalysts to absorb more
light efficiently. To achieve this, doping ZnO with Ni- significantly enhances the former’s
photocatalytic characteristics by extending the lifespan of the electron–hole pairs and in-
creasing the compound’s light-harvesting capacity [33]. The process involves exposing
the ZnO nanostructure to blue laser photons, which could excite electrons from the va-
lence band to the conduction band, creating holes in the valence band. Ni nanoparticles
on the surface of the ZnO then trap the excited electrons, effectively slowing down the
recombination process. The holes produced can then react with adsorbed H2O molecules,
generating active species such as OH•, which initiates the degradation of organic dyes such
as MB molecules.

Moreover, the trapped electrons interact with dissolved O2, forming O2
•, as shown

in Figure 14. Overall, incorporating Ni-doped ZnO nanopowders into photocatalytic
processes offers an eco-friendly and effective solution for pollutant cleanup by increasing
the photocatalytic activity [60,61]. Doping can alter the electronic properties of a material.
Doping introduces new energy levels into the band structure of a material [62]. In the
case of Ni doping, it can introduce impurity levels within the band gap of ZnO, effectively
reducing the band gap energy. This is due to the addition of Ni 3d states, which are
located just below the conduction band of ZnO. This can enhance light absorption and,
consequently, photocatalytic activity.

hν + ZnO = h+(VB) + e−(CB) (11)

Ni0 + 2e = Ni2− (12)

Ni2− + O2 = O−2• (13)

h+(VB) + H2O = OH•+H+ (14)

MB Dye +
(

O−2• + OH•
)
= CO2 + H2O (15)

3.6.4. Significance of the Findings

The synthesis process adopted in this study, particularly the LACBS technique, is a
significant contribution. This methodology allows for the synthesis of high-purity ZnO
nanopowder and the precise control of Ni doping, thereby optimizing the photocatalytic
performance of the synthesized materials. This synthesis technique substantially con-
tributes to the methods available for creating novel photocatalysts. Moreover, the study
utilizes an extensive array of advanced characterization techniques, such as XRD, FE-SEM,
EDX, UV–Vis spectroscopy, and FTIR. These techniques facilitate a detailed understand-
ing of the synthesized materials’ crystallinity, morphology, elemental composition, and
optical properties. This comprehensive characterization is crucial for ensuring the synthe-
sis’s reproducibility and for understanding the structure–function relationships of these
materials, constituting a significant aspect of materials science and photocatalysis. The
comparative evaluation of the photocatalytic performance of pristine and Ni-doped ZnO
nanostructures towards the degradation of MB under blue laser light irradiation is an-
other key contribution of this study. The results suggest that Ni doping enhances the
photocatalytic efficiency of ZnO. This finding can provide valuable insights for designing
efficient photocatalysts for water treatment applications and opens new directions for
future research. Finally, the study underscores the need for further research into using
ZnO and Ni-doped ZnO nano-photocatalysts for organic dye degradation. The study
opens new avenues for future research, especially in terms of exploring other dopants and
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modifying the synthesis process to further enhance the photocatalytic performance of ZnO.
Therefore, this study significantly contributes to ongoing research into photocatalysis and
environmental remediation.
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Figure 14. Schematic diagram of the proposed mechanism for the degradation of MB using pure and
Ni-doped ZnO nanostructures.

4. Conclusions

This paper presents a detailed investigation of the synthesis and characterization of
pure and Ni-doped ZnO nanostructures using the low-cost and high-productivity LACBS
method. The samples were thoroughly characterized using various analytical techniques,
including structural, morphological, spectral, optical, and photocatalytic studies. The
conducted XRD analysis revealed the hexagonal wurtzite structure of the synthesized
samples. Notably, Ni doping did not introduce any secondary phase and produced highly
dense and homogeneous hexagonal nanosized particles. However, as the Ni-doping
concentration increased from 1% to 3%, a transition in morphology from particles to
hexagonal flakes was observed. The EDX analysis confirmed the presence of Zn, O, and
Ni in all the samples, with the Ni content increasing with the doping concentration. The
band gap studies revealed a significant decrease in bandgap (Eg) with the increase in the
Ni concentration. The values of Eg were found to be 3.22 eV, 3.16 eV, and 3.03 eV for the
Ni-doped ZnO samples with doping concentrations of 1%, 2%, and 3%, respectively. FTIR
studies were conducted in the range of 500 cm−1 to 4000 cm−1 to investigate the wurtzite
structures of the pure and Ni-doped (1%, 2%, and 3%) ZnO nanostructures. The results
indicated that Ni plays a crucial role in the electron-trapping properties of these materials,
while oxygen faults are necessary for enhancing photocatalytic activity.
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