Structural and Magnetic Properties of the {Cr(pybd)3[Cu(cyclen)]2}(BF4)4 Heteronuclear Complex
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis
2.1.1. General Remarks
2.1.2. Synthesis of {Cr(pybd)3[Cu(cyclen)]2}(BF4)4
2.2. UV–Vis Spectroscopy
2.3. X-ray Structural Characterization
2.4. DC Magnetometry
2.5. Electron Paramagnetic Resonance (EPR) Spectroscopy
3. Results and Discussion
3.1. Synthesis
3.2. Structural Characterization
3.3. UV–Vis Spectroscopy Characterization
3.4. Magnetism and EPR Spectroscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Heinrich, A.J.; Oliver, W.D.; Vandersypen, L.M.K.; Ardavan, A.; Sessoli, R.; Loss, D.; Jayich, A.B.; Fernandez-Rossier, J.; Laucht, A.; Morello, A. Quantum-Coherent Nanoscience. Nat. Nanotechnol. 2021, 16, 1318–1329. [Google Scholar] [CrossRef]
- Atzori, M.; Sessoli, R. The Second Quantum Revolution: Role and Challenges of Molecular Chemistry. J. Am. Chem. Soc. 2019, 141, 11339–11352. [Google Scholar] [CrossRef] [PubMed]
- Gaita-Ariño, A.; Luis, F.; Hill, S.; Coronado, E. Molecular Spins for Quantum Computation. Nat. Chem. 2019, 11, 301–309. [Google Scholar] [CrossRef]
- Bonizzoni, C.; Ghirri, A.; Santanni, F.; Atzori, M.; Sorace, L.; Sessoli, R.; Affronte, M. Storage and Retrieval of Microwave Pulses with Molecular Spin Ensembles. npj Quantum Inf. 2020, 6, 68. [Google Scholar] [CrossRef]
- Bonizzoni, C.; Tincani, M.; Santanni, F.; Affronte, M. Machine-Learning-Assisted Manipulation and Readout of Molecular Spin Qubits. Phys. Rev. Appl. 2022, 18, 064074. [Google Scholar] [CrossRef]
- Chicco, S.; Chiesa, A.; Allodi, G.; Garlatti, E.; Atzori, M.; Sorace, L.; De Renzi, R.; Sessoli, R.; Carretta, S. Controlled Coherent Dynamics of [VO(TPP)], a Prototype Molecular Nuclear Qudit with an Electronic Ancilla. Chem. Sci. 2021, 12, 12046–12055. [Google Scholar] [CrossRef]
- Chizzini, M.; Crippa, L.; Zaccardi, L.; Macaluso, E.; Carretta, S.; Chiesa, A.; Santini, P. Quantum Error Correction with Molecular Spin Qudits. Phys. Chem. Chem. Phys. 2022, 24, 20030–20039. [Google Scholar] [CrossRef]
- Hazra, S.; Bhattacharjee, A.; Chand, M.; Salunkhe, K.V.; Gopalakrishnan, S.; Patankar, M.P.; Vijay, R. Ring-Resonator-Based Coupling Architecture for Enhanced Connectivity in a Superconducting Multiqubit Network. Phys. Rev. Appl. 2021, 16, 024018. [Google Scholar] [CrossRef]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2010; ISBN 9780511976667. [Google Scholar]
- Lockyer, S.J.; Chiesa, A.; Timco, G.A.; McInnes, E.J.L.; Bennett, T.S.; Vitorica-Yrezebal, I.J.; Carretta, S.; Winpenny, R.E.P. Targeting Molecular Quantum Memory with Embedded Error Correction. Chem. Sci. 2021, 12, 9104–9113. [Google Scholar] [CrossRef]
- Ranieri, D.; Santanni, F.; Privitera, A.; Albino, A.; Salvadori, E.; Chiesa, M.; Totti, F.; Sorace, L.; Sessoli, R. An Exchange Coupled Meso—Meso Linked Vanadyl Porphyrin Dimer for Quantum Information Processing. Chem. Sci. 2023, 14, 61–69. [Google Scholar] [CrossRef]
- Ferrando-Soria, J.; Moreno Pineda, E.; Chiesa, A.; Fernandez, A.; Magee, S.A.; Carretta, S.; Santini, P.; Vitorica-Yrezabal, I.J.; Tuna, F.; Timco, G.A.; et al. A Modular Design of Molecular Qubits to Implement Universal Quantum Gates. Nat. Commun. 2016, 7, 11377. [Google Scholar] [CrossRef] [PubMed]
- Atzori, M.; Chiesa, A.; Morra, E.; Chiesa, M.; Sorace, L.; Carretta, S.; Sessoli, R. A Two-Qubit Molecular Architecture for Electron-Mediated Nuclear Quantum Simulation. Chem. Sci. 2018, 9, 6183–6192. [Google Scholar] [CrossRef] [PubMed]
- Borilovic, I.; Alonso, P.J.; Roubeau, O.; Aromí, G. A Bis-Vanadyl Coordination Complex as a 2-Qubit Quantum Gate. Chem. Commun. 2020, 56, 3139–3142. [Google Scholar] [CrossRef] [PubMed]
- Troiani, F.; Affronte, M. Molecular Spins for Quantum Information Technologies. Chem. Soc. Rev. 2011, 40, 3119. [Google Scholar] [CrossRef]
- Nakazawa, S.; Nishida, S.; Ise, T.; Yoshino, T.; Mori, N.; Rahimi, R.D.; Sato, K.; Morita, Y.; Toyota, K.; Shiomi, D.; et al. A Synthetic Two-Spin Quantum Bit: G -Engineered Exchange-Coupled Biradical Designed for Controlled-NOT Gate Operations. Angew. Chem. Int. Ed. 2012, 51, 9860–9864. [Google Scholar] [CrossRef]
- Maniaki, D.; Garay-Ruiz, D.; Barrios, L.A.; Martins, D.O.T.A.; Aguilà, D.; Tuna, F.; Reta, D.; Roubeau, O.; Bo, C.; Aromí, G. Unparalleled Selectivity and Electronic Structure of Heterometallic [LnLn′Ln] Molecules as 3-Qubit Quantum Gates. Chem. Sci. 2022, 13, 5574–5581. [Google Scholar] [CrossRef]
- Macaluso, E.; Rubín, M.; Aguilà, D.; Chiesa, A.; Barrios, L.A.; Martínez, J.I.; Alonso, P.J.; Roubeau, O.; Luis, F.; Aromí, G.; et al. A Heterometallic [LnLn′Ln] Lanthanide Complex as a Qubit with Embedded Quantum Error Correction. Chem. Sci. 2020, 11, 10337–10343. [Google Scholar] [CrossRef]
- Aguilà, D.; Barrios, L.A.; Velasco, V.; Roubeau, O.; Repollés, A.; Alonso, P.J.; Sesé, J.; Teat, S.J.; Luis, F.; Aromí, G. Heterodimetallic [LnLn′] Lanthanide Complexes: Toward a Chemical Design of Two-Qubit Molecular Spin Quantum Gates. J. Am. Chem. Soc. 2014, 136, 14215–14222. [Google Scholar] [CrossRef]
- Mata, J.A.; Hahn, F.E.; Peris, E. Heterometallic Complexes, Tandem Catalysis and Catalytic Cooperativity. Chem. Sci. 2014, 5, 1723–1732. [Google Scholar] [CrossRef]
- Maldonado, C.S.; de la Rosa, J.R.; Lucio-Ortiz, C.J.; Sandoval-Rangel, L.; Martínez-Vargas, D.X.; Sánchez, R.A.L. Applications of Heterometallic Complexes in Catalysis. In Direct Synthesis of Metal Complexes; Elsevier: Amsterdam, The Netherlands, 2018; pp. 369–377. [Google Scholar]
- Buchwalter, P.; Rosé, J.; Braunstein, P. Multimetallic Catalysis Based on Heterometallic Complexes and Clusters. Chem. Rev. 2015, 115, 28–126. [Google Scholar] [CrossRef]
- Zhang, Y.-Y.; Gao, W.-X.; Lin, L.; Jin, G.-X. Recent Advances in the Construction and Applications of Heterometallic Macrocycles and Cages. Coord. Chem. Rev. 2017, 344, 323–344. [Google Scholar] [CrossRef]
- Uber, J.S.; Estrader, M.; Garcia, J.; Lloyd-Williams, P.; Sadurní, A.; Dengler, D.; van Slageren, J.; Chilton, N.F.; Roubeau, O.; Teat, S.J.; et al. Molecules Designed to Contain Two Weakly Coupled Spins with a Photoswitchable Spacer. Chem. Eur. J. 2017, 23, 13648–13659. [Google Scholar] [CrossRef]
- Wernsdorfer, W.; Mailly, D.; Timco, G.A.; Winpenny, R.E.P. Resonant Photon Absorption and Hole Burning in {Cr7Ni} Antiferromagnetic Rings. Phys. Rev. B 2005, 72, 060409. [Google Scholar] [CrossRef]
- Dey, A.; Acharya, J.; Chandrasekhar, V. Heterometallic 3d–4f Complexes as Single-Molecule Magnets. Chem. Asian J. 2019, 14, 4433–4453. [Google Scholar] [CrossRef]
- Larsen, E.M.H.; Bonde, N.A.; Weihe, H.; Ollivier, J.; Vosch, T.; Lohmiller, T.; Holldack, K.; Schnegg, A.; Perfetti, M.; Bendix, J. Experimental Assignment of Long-Range Magnetic Communication through Pd & Pt Metallophilic Contacts. Chem. Sci. 2023, 14, 266–276. [Google Scholar] [CrossRef] [PubMed]
- Funes, A.V.; Perfetti, M.; Kern, M.; Rußegger, N.; Carrella, L.; Rentschler, E.; Slageren, J.; Alborés, P. Single Molecule Magnet Features in the Butterfly [CoIII2LnIII 2] Pivalate Family with Alcohol-Amine Ligands. Eur. J. Inorg. Chem. 2021, 2021, 3191–3210. [Google Scholar] [CrossRef]
- Belli Dell’Amico, D.; Ciattini, S.; Fioravanti, L.; Labella, L.; Marchetti, F.; Mattei, C.A.; Samaritani, S. The Heterotopic Divergent Ligand N-Oxide-4,4′-Bipyridine (BipyMO) as Directing-Agent in the Synthesis of Oligo- or Polynuclear Heterometallic Complexes. Polyhedron 2018, 139, 107–115. [Google Scholar] [CrossRef]
- Sanz, S.; O’Connor, H.M.; Pineda, E.M.; Pedersen, K.S.; Nichol, G.S.; Mønsted, O.; Weihe, H.; Piligkos, S.; McInnes, E.J.L.; Lusby, P.J.; et al. [CrIII8MII6]12+ Coordination Cubes (MII = Cu, Co). Angew. Chem. Int. Ed. 2015, 54, 6761–6764. [Google Scholar] [CrossRef]
- Wise, M.D.; Holstein, J.J.; Pattison, P.; Besnard, C.; Solari, E.; Scopelliti, R.; Bricogne, G.; Severin, K. Large, Heterometallic Coordination Cages Based on Ditopic Metallo-Ligands with 3-Pyridyl Donor Groups. Chem. Sci. 2015, 6, 1004–1010. [Google Scholar] [CrossRef]
- Timco, G.A.; Carretta, S.; Troiani, F.; Tuna, F.; Pritchard, R.J.; Muryn, C.A.; McInnes, E.J.L.; Ghirri, A.; Candini, A.; Santini, P.; et al. Engineering the Coupling between Molecular Spin Qubits by Coordination Chemistry. Nat. Nanotechnol. 2009, 4, 173–178. [Google Scholar] [CrossRef]
- Durot, S.; Taesch, J.; Heitz, V. Multiporphyrinic Cages: Architectures and Functions. Chem. Rev. 2014, 114, 8542–8578. [Google Scholar] [CrossRef]
- Pilgrim, B.S.; Champness, N.R. Metal-Organic Frameworks and Metal-Organic Cages—A Perspective. Chempluschem 2020, 85, 1842–1856. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, H.M.; Sanz, S.; Pitak, M.B.; Coles, S.J.; Nichol, G.S.; Piligkos, S.; Lusby, P.J.; Brechin, E.K. [CrIII8MII6]N+ (MII = Cu, Co) Face-Centred, Metallosupramolecular Cubes. CrystEngComm 2016, 18, 4914–4920. [Google Scholar] [CrossRef]
- O’Connor, H.M.; Sanz, S.; Scott, A.J.; Pitak, M.B.; Klooster, W.T.; Coles, S.J.; Chilton, N.F.; McInnes, E.J.L.; Lusby, P.J.; Weihe, H.; et al. [CrIII8MII6]N+ Heterometallic Coordination Cubes. Molecules 2021, 26, 757. [Google Scholar] [CrossRef] [PubMed]
- Sanz, S.; O’Connor, H.M.; Martí-Centelles, V.; Comar, P.; Pitak, M.B.; Coles, S.J.; Lorusso, G.; Palacios, E.; Evangelisti, M.; Baldansuren, A.; et al. [MIII2MII3]N+ Trigonal Bipyramidal Cages Based on Diamagnetic and Paramagnetic Metalloligands. Chem. Sci. 2017, 8, 5526–5535. [Google Scholar] [CrossRef] [PubMed]
- Bruker. Bruker APEX 2; Bruker AXS Inc.: Madison, WI, USA, 2012. [Google Scholar]
- Altomare, A.; Cuocci, C.; Giacovazzo, C.; Moliterni, A.; Rizzi, R.; Corriero, N.; Falcicchio, A. EXPO2013: A Kit of Tools for Phasing Crystal Structures from Powder Data. J. Appl. Crystallogr. 2013, 46, 1231–1235. [Google Scholar] [CrossRef]
- Coelho, A.A. TOPAS and TOPAS-Academic: An Optimization Program Integrating Computer Algebra and Crystallographic Objects Written in C++. J. Appl. Crystallogr. 2018, 51, 210–218. [Google Scholar] [CrossRef]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M.; et al. Mercury 4.0: From Visualization to Analysis, Design and Prediction. J. Appl. Crystallogr. 2020, 53, 226–235. [Google Scholar] [CrossRef]
- Bain, G.A.; Berry, J.F. Diamagnetic Corrections and Pascal’s Constants. J. Chem. Educ. 2008, 85, 532. [Google Scholar] [CrossRef]
- Glidewell, C. Metal Acetylacetonate Complexes: Preparation and Characterization. In Inorganic Experiments; Woollins, J.E., Ed.; Wiley-VCH: Weinheim, Germany, 2003. [Google Scholar]
- Faggi, E.; Gavara, R.; Bolte, M.; Fajarí, L.; Juliá, L.; Rodríguez, L.; Alfonso, I. Copper(Ii) Complexes of Macrocyclic and Open-Chain Pseudopeptidic Ligands: Synthesis, Characterization and Interaction with Dicarboxylates. Dalton Trans. 2015, 44, 12700–12710. [Google Scholar] [CrossRef]
- Flores-Rojas, G.G.; Ruiu, A.; Vonlanthen, M.; Rojas-Montoya, S.M.; Martínez-Serrano, R.D.; Morales-Morales, D.; Rivera, E. Synthesis and Characterization of Cyclen Cored Photoactive Star Compounds and Their Cu(I) and Cu(II) Complexes. Effect of the Valence and Ligand Size on Their Molar Extinction Coefficient. Inorg. Chim. Acta 2020, 513, 119927. [Google Scholar] [CrossRef]
- Tosato, M.; Dalla Tiezza, M.; May, N.V.; Isse, A.A.; Nardella, S.; Orian, L.; Verona, M.; Vaccarin, C.; Alker, A.; Mäcke, H.; et al. Copper Coordination Chemistry of Sulfur Pendant Cyclen Derivatives: An Attempt to Hinder the Reductive-Induced Demetalation in 64/67 Cu Radiopharmaceuticals. Inorg. Chem. 2021, 60, 11530–11547. [Google Scholar] [CrossRef] [PubMed]
- El Ghachtouli, S.; Cadiou, C.; Déchamps-Olivier, I.; Chuburu, F.; Aplincourt, M.; Roisnel, T. (Cyclen– and Cyclam–Pyridine)Copper Complexes: The Role of the Pyridine Moiety in CuII and CuI Stabilisation. Eur. J. Inorg. Chem. 2006, 2006, 3472–3481. [Google Scholar] [CrossRef]
- Lacerda, S.; Campello, M.P.; Santos, I.C.; Santos, I.; Delgado, R. Study of the Cyclen Derivative 2-[1,4,7,10-Tetraazacyclododecan-1-Yl]-Ethanethiol and Its Complexation Behaviour towards d-Transition Metal Ions. Polyhedron 2007, 26, 3763–3773. [Google Scholar] [CrossRef]
- Stoll, S.; Schweiger, A. EasySpin, a Comprehensive Software Package for Spectral Simulation and Analysis in EPR. J. Magn. Reson. 2006, 178, 42–55. [Google Scholar] [CrossRef] [PubMed]
- Bonomo, R.P.; Di Bilio, A.J.; Riggi, F. EPR Investigation of Chromium(III) Complexes: Analysis of Their Frozen Solution and Magnetically Dilute Powder Spectra. Chem. Phys. 1991, 151, 323–333. [Google Scholar] [CrossRef]
- Elbers, G.; Remme, S.; Lehmann, G. EPR of Chromium(3+) in Tris(Acetylacetonato)Gallium(III) Single Crystals. Inorg. Chem. 1986, 25, 896–897. [Google Scholar] [CrossRef]
- Jeschke, G. DEER Distance Measurements on Proteins. Annu. Rev. Phys. Chem. 2012, 63, 419–446. [Google Scholar] [CrossRef]
- Chilton, N.F.; Anderson, R.P.; Turner, L.D.; Soncini, A.; Murray, K.S. PHI: A Powerful New Program for the Analysis of Anisotropic Monomeric and Exchange-Coupled Polynuclear d- and f -Block Complexes. J. Comput. Chem. 2013, 34, 1164–1175. [Google Scholar] [CrossRef]
Molecular Formula | C42CrCu2N12O6,4(BF4) |
---|---|
Mr | 1294.8 |
T(K) | RT |
λ (Å) | 1.54056 |
crystal system, space group | triclinic, P-1 |
unit cell dimensions (Å, °) | a = 12.5014(5), b = 15.2007(8), c = 18.4058(8) α = 105.05(4), β = 90.228(5), γ = 95.988(3) |
volume (Å3) | 3357.5(3) |
Z, Dx (g/cm−3) | 2, 1.325 |
μ (mm−1) | 0.906 |
Rwp (%) | 4.66 |
GOOFs | 1.52 |
Parameters | [Cr(pybd)3] | [Cu(cyclen)BF4](BF4) | {Cr(pybd)3[Cu(cyclen)]}(BF4)4 | |
---|---|---|---|---|
gx | 1.97(1) | 2.047(2) | 1.97(1) a | 2.050(2) b |
gy | 1.97(1) | 2.047(2) | 1.97(1) a | 2.050(2) b |
gz | 1.97(1) | 2.204(2) | 1.97(1) a | 2.206(2) b |
D (cm−1) | 0.55(5) | - | 0.21(1) a | - |
E (cm−1) | 0.025(1) | - | 0.02(1) a | - |
Ax (10−4 cm−1) | - | 17(2) | - | 18(2) b |
Ay (10−4 cm−1) | - | 17(2) | - | 18(2) b |
Az (10−4 cm−1) | - | 182(2) | - | 184(2) b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santanni, F.; Chelazzi, L.; Sorace, L.; Timco, G.A.; Sessoli, R. Structural and Magnetic Properties of the {Cr(pybd)3[Cu(cyclen)]2}(BF4)4 Heteronuclear Complex. Crystals 2023, 13, 901. https://doi.org/10.3390/cryst13060901
Santanni F, Chelazzi L, Sorace L, Timco GA, Sessoli R. Structural and Magnetic Properties of the {Cr(pybd)3[Cu(cyclen)]2}(BF4)4 Heteronuclear Complex. Crystals. 2023; 13(6):901. https://doi.org/10.3390/cryst13060901
Chicago/Turabian StyleSantanni, Fabio, Laura Chelazzi, Lorenzo Sorace, Grigore A. Timco, and Roberta Sessoli. 2023. "Structural and Magnetic Properties of the {Cr(pybd)3[Cu(cyclen)]2}(BF4)4 Heteronuclear Complex" Crystals 13, no. 6: 901. https://doi.org/10.3390/cryst13060901